python实现函数y=3x^3 + 2x^2 + 4x的导数

博客通过Python实现了计算函数y=3x^3 + 2x^2 + 4x在不同x值处的导数,利用差分逼近方法求得在x=2、7、12处的导数,验证了导数公式y^’ = 9x^2 + 4x + 4的准确性,结果与理论值吻合良好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python实现函数的导数


导数
导数表示的是某个瞬间的变化量
d f ( x ) d x = lim ⁡ h → 0 f ( x + h ) − f ( x ) h \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} dxdf(x)=h0limhf(x+h)f(x)
d f ( x ) d x \frac{df(x)}{dx} dxdf(x) 表示f(x)关于x的导 数,即f(x)相对于x的变化程度。整个式子就表示当x有微小变化的时候,整个函数f(x)也将会有不同程度的变化。

式子在计算了函 数f在x+h和x之间的差分,这实际上也就是x+h和x之间的斜率,而我们需要更精确就需要计算对应函数在x处切线的斜率。所以我们使用计算函数f在(x+h)和(x-h)之间的差分来实现。这种计算方法以x为中心,计算它左右两边的差分。所以上式可以表示为:
d f ( x ) d x = lim ⁡ h → 0 f ( x + h ) − f ( x − h ) 2 h \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h)-f(x-h)}{2h} dxdf(x)=h0lim

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值