python实现函数的导数
导数
导数表示的是某个瞬间的变化量
d f ( x ) d x = lim h → 0 f ( x + h ) − f ( x ) h \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} dxdf(x)=h→0limhf(x+h)−f(x)
d f ( x ) d x \frac{df(x)}{dx} dxdf(x) 表示f(x)关于x的导 数,即f(x)相对于x的变化程度。整个式子就表示当x有微小变化的时候,整个函数f(x)也将会有不同程度的变化。
式子在计算了函 数f在x+h和x之间的差分,这实际上也就是x+h和x之间的斜率,而我们需要更精确就需要计算对应函数在x处切线的斜率。所以我们使用计算函数f在(x+h)和(x-h)之间的差分来实现。这种计算方法以x为中心,计算它左右两边的差分。所以上式可以表示为:
d f ( x ) d x = lim h → 0 f ( x + h ) − f ( x − h ) 2 h \frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h)-f(x-h)}{2h} dxdf(x)=h→0lim