自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 收藏
  • 关注

原创 定长窗口滑动思路

在通过指针前移,不断获得下一个长度为k的子数组,直到指针到达数组末尾,即遍历完所有长度为k的子数组。求解数组中一个定长为k的子数组的问题。先找到数组的前k个数字组成的子数组。计右指针为r,左指针为r-k+1。

2024-01-10 10:45:58 362

原创 D3Former: Debiased Dual Distilled Transformer for Incremental Learning

这篇文章是cvpr2023年的一篇文章,探索了ViT模型在增量学习的应用。ViT模型训练需要大量的数据,但增量学习每个新任务的数据一般较少。作者利用了一种比较新的transformer模型,a Nested Vision Transformer,适用于大型数据集和小型数据集。2.Dual Distillation:除了在logits /特征上应用的常规蒸馏损失,随着增量学习的进展,保持教师模型和学生模型在输入图像上的关注保持一致。

2023-06-08 15:42:49 141

原创 元学习增量学习结合(一i)

当前大多数增量学习方法,从随机初始化的参数开始,并进行优化以掌握当前任务(第一个任务),而不管所学习的表示对未来任务的有用性如何(增量学习的起点很重要,刚开始的参数如果泛用性很强,可能对增量学习任务很有帮助)。此外,未来的每一个任务都使用以前学到的所有知识,尽管这些知识的一部分可能对其学习没有帮助(选择有用的知识)。这些造成任务之间的干扰,尤其是在以前任务的数据不可访问的情况下。

2023-04-18 23:04:11 457

原创 R-DFCIL: Relation-Guided Representation Learning for Data-Free Class Incremental Learning

DFCIL(Data-Free Class Incremental Learning)中,利用模型反演(model invertson)来合成先前任务的数据,对合成数据进行知识蒸馏获得过去知识。但是合成数据与新数据间存在着严重的domain gap,误导了新类和旧类的决策边界。对DFCIL with synthetic data of previous classes问题进行研究后,作者提出了先前方法中的瓶颈。

2023-03-26 18:22:21 275 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除