Python系统仿真
文章平均质量分 84
捡到野生的惠惠
这个人很懒,喜欢天天摸鱼
展开
-
Python系统仿真其三:洛伦兹系统仿真展示
文章目录一、Lorenz系统二、代码和仿真一、Lorenz系统参考我之前的文章MATLAB混沌系统仿真其一:Lorenz系统和Rossler系统。Lorenz系统包含3个微分方程。Lorenz在1963年证明了这个系统中存在混沌(Lorenz认为由三变量非线性耦合微分方程描述的系统都能产生chaos,1975)。变量X、Y、Z分别表示循环流体的流速、上升和下降流体的温差和垂直温度剖面的畸变。其微分形式如下:dx=−σ(x−y)dx\mathrm{=}-\sigma\left(x-y\rig原创 2021-09-09 14:30:47 · 2663 阅读 · 0 评论 -
Python系统仿真其二:半导体激光器速率方程
文章目录一、Lang–Kobayashi方程# 前言混沌现象一直以来被广泛研究。半导体激光器产生的混沌激光是人工产生混沌的一种常用方式,在保密通信、高速物理随机数产生等领域应用广泛。使用龙格库塔四阶算法对速率方程进行仿真,即可仿真出结果。本文对原理不做深入分析。一、Lang–Kobayashi方程速率方程由复光场方程和激光腔内的载流子密度方程组成,是描述系统的动态特性的时变方程。设激光器输出的场振幅和相位分别为AAA和∅\emptyset∅,载流子密度为NNN,参考Ohtsubo的半导体原创 2021-08-27 09:51:53 · 4242 阅读 · 0 评论 -
Python系统仿真其一:logistics递归方程
文章目录前言一、逻辑斯蒂映射(logistic map)二、Python仿真前言混沌是系统在微小的外界扰动下产生的无序的非线性动态。在基础理论的学习中,一个参数已经确定的系统在给定条件下会得到确定的解,求出系统的解后就可以确定系统过去、现在以及未来的状态,因此,求解系统等同于进行预测系统状态。随着KAM定理等理论的出现,研究系统不再局限于光滑的、确定的解,而是开始考虑混沌解,尤其是在天气播报、地震预测等描述长期行为的系统。一、逻辑斯蒂映射(logistic map)logistics映射的原创 2021-08-26 17:20:49 · 1027 阅读 · 0 评论