问题描述
小明正在玩一个“翻硬币”的游戏。
桌上放着排成一排的若干硬币。我们用 * 表示正面,用 o 表示反面(是小写字母,不是零)。
比如,可能情形是:**oo***oooo
如果同时翻转左边的两个硬币,则变为:oooo***oooo
现在小明的问题是:如果已知了初始状态和要达到的目标状态,每次只能同时翻转相邻的两个硬币,那么对特定的局面,最少要翻动多少次呢?
我们约定:把翻动相邻的两个硬币叫做一步操作,那么要求:
输入格式
两行等长的字符串,分别表示初始状态和要达到的目标状态。每行的长度<1000
输出格式
一个整数,表示最小操作步数。
样例输入1
**********
o****o****
样例输出1
5
样例输入2
*o**o***o***
*o***o**o***
样例输出2
1
思路:
观察输入和输出可得,输入1中的第1个和第6个不同 他们需要翻转5次,输入2中的第5个和第6个不同,他们需要翻转一次(不理解的话可以多举几个例子),如果有奇数个不同是不可能翻转成一样的
易得翻转次数为第二个不同的下标-第一个不同的下标
故只需要遍历一遍 找到第一个不同的下标和第二个不同的下标 他们的距离就是要翻转的次数,直到遍历完全部。
public class Main{
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
String str1 = s.next();
String str2 = s.next();
int len = str1.length();
int left = 0;
int res = 0;
for (; left < len; left++) {
if (str1.charAt(left) != str2.charAt(left)) {
int right = left + 1;
while (right < len && str1.charAt(right) == str2.charAt(right)) {
right++;
}
if (right < len) {
res += right - left;
left = right;
}
}
}
System.out.println(res);
}
}