- 博客(85)
- 收藏
- 关注
原创 YOLOV8改进DSConv分布移位卷积
基础干货:高效卷积,降内存提速度保精度 (eepw.com.cn)各种卷积性能对比(Conv,DwConv,GhostConv,PConv,DCNV)-CSDN博客
2024-07-07 20:03:58 256
原创 YOLOV8代码理解
骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的C3结构换成了梯度流更丰富的C2f结构,并对不同尺度模型调整了不同的通道数。属于对模型结构精心微调,不再是无脑一套参数应用所有模型,大幅提升了模型性能。不过这个 C2f 模块中存在 Split 等操作对特定硬件部署没有之前那么友好了。
2024-05-13 16:20:41 1039
原创 水面垃圾清理机器人的视觉算法研究
卷积神经网络是一种分层的数据表示模型,通常由数据输入层、卷积层、池化层、 非线性激活函数、全连接层以及输出结果预测层等组成,其中卷积层、池化层和非线 性激活函数是卷积神经网络中的重要组成部分。常见的损失函数有均方误差损失函数、交叉熵损失函数和基于 IOU(Intersection over Union, IOU)的系列损失函数,网络中为更新损失函数(Loss Function)的相关参数, 需要进行偏导计算,通过计算损失函数得到损失值,该值将衡量预测值与真实值之间 的差距。
2024-05-08 22:45:53 940
原创 YOLO代码复现
睿智的目标检测66——Pytorch搭建YoloV8目标检测平台_pytorch_quantization yolov8-CSDN博客Mask rcnn代码实现_pytorch版_适用30系列显卡_mask rcnn 30显卡-CSDN博客完整且详细的Yolov8复现+训练自己的数据集-CSDN博客
2024-05-07 10:45:28 243
原创 CVPR2024论文整理及最新算法整理
CVPR 2024 | 腾讯优图实验室20篇论文入选,含图文多模态大模型、高分辨视觉分割、跨模态生成、人脸识别等研究方向-腾讯云开发者社区-腾讯云 (tencent.com)CVPR2024满分论文出炉!分割万物再次火爆AI界-CSDN博客【综述】三维点云深度学习算法综述,sota pointcloud - 知乎 (zhihu.com)
2024-05-06 22:04:47 531
原创 注意力机制研究
GitHub - xmu-xiaoma666/External-Attention-pytorch: 🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐
2024-05-05 14:18:42 275
原创 YOLOV8模型更改
速递 | YOLOv8模型改进的N种方法-CSDN博客【10】yolov8目标检测模型改进之添加注意力机制_yolov8中添加无参数注意力-CSDN博客YOLO系列助力涨点!新SOTA让缺陷检测更准更快!(附开源数据集下载) - 哔哩哔哩 (bilibili.com)
2024-05-01 15:12:46 189
原创 YOLOV8环境配置
【yolov8.1超简单环境搭建、标注、训练、转onnx、转输出维度】https://www.bilibili.com/video/BV1Mu411F7MD?gitub镜像下载地址:https://hub.nuaa.cf/shouxieai/infer。需要C#、易语言yolo调用框架可联系up,全网最强,没有之一。yolo标注转换工具(30元)4.创建python环境。4.创建python环境。2.yolo源码与模型。
2024-03-22 17:07:03 895
原创 YOLOv8.1.0安装
看到用conda install可以安装的各种cudatoolkit和cudnn版本以及匹配关系,确认好自己需要的版本。我用的1080Ti显卡,选择了cudatoolkit=11.3.1和cudnn=8.2.1。(1)创建新的虚拟环境,使用下述语句:conda create -n yolov8 python=3.8。输入conda install cudatoolkit=11.3.1,敲y。输入conda install cudnn=8.2.1,敲y。(3)装cudatoolkit。
2024-03-08 15:24:50 982
原创 YOLO V5、SAM、RESNET50模型在GPU环境下搭建过程
对于YOLOv5和SAM,你可以根据它们的文档或示例来运行模型。- 对于ResNet50,你可以使用PyTorch的预训练模型进行推理或微调。- 对于YOLOv5和SAM,你需要准备相应的数据集和预训练权重。好的,我将提供更详细的步骤来搭建YOLOv5、SAM和ResNet50模型在GPU环境下的过程。- 对于ResNet50,你可以使用PyTorch自带的预训练权重,或者根据你的任务微调。**4. 准备数据集和权重文件:****3. 下载模型代码:****1. 环境设置:****5. 运行模型:**
2024-02-27 13:59:46 572
原创 安装Anaconda、PyTorch(GPU版)库与PyCharm】
【Python深度学习:安装Anaconda、PyTorch(GPU版)库与PyCharm】https://www.bilibili.com/video/BV1cD4y1H7Tk?
2023-11-25 13:42:27 628
原创 python和PYtorch学习
【精选】Python安装Pytorch教程(图文详解)_振华OPPO的博客-CSDN博客【精选】Python安装Pytorch教程(图文详解)_振华OPPO的博客-CSDN博客数据类型-基础语法-CSDNPython入门技能树全网最全python教程,从零到精通(学python有它就够必收藏)-CSDN博客精选100个Python实战项目案例,送给缺乏实战经验的你_python项目案例-CSDN博客这十个Python实战项目,让你瞬间读懂Python!_python项目-CSDN博客
2023-11-18 17:44:22 159
原创 基于点云的深度学习方法综述
在基于体素的方法中,我们用类似的操作进行卷积:首先将点云转化为大小是X×Y×Z的3D体素结构,然后用大小为x × y × z的3D卷积核对该体素结构进行卷积操作(其中,x <= X,y <= Y,z <= Z)。我们用P = R(N × D)表示输入PointNet的点云,其中N点云中点的数量,D是每个点的维度,通常D = 3,代表每个点的XYZ坐标,当然还可以有其他特征。当局部区域的点密度比较低的时候,第一部分向量的可靠性要低于第二部分,因为在生成第一部分向量的时候,各子区域点的稀疏性导致采样效率低下。
2023-11-06 17:27:51 707
原创 点云学习记录
总结而言,基于多尺度学习的语义分割方法十分有效,但同时也会带来棘手的问题,即复杂度较高。此外,尽管研究者们研究出多种在CNN内部学习多尺度特征的方法,但大多数方法在特征融合时采用直接堆叠的方式。该方式忽略了不同级别特征间的语义鸿沟,大幅降低了融合后特征的视觉识别力,因此这些方法在场景更为复杂的环境中往往难以奏效。2、点云语义分割尽管基于图像数据的深度学习方法显著推动了场景语义分割的发展,但图像数据缺乏3D形状结构信息,因此在很多场景中的应用有限。
2023-11-05 10:52:29 194
原创 ICP学习记录
1. 流程图ICP(一)原理详解_icp原理-CSDN博客ICP算法详解——我见过最清晰的解释-CSDN博客ICP算法理解-CSDN博客ICP知识点梳理笔记_icp非凸_KalutSirocco的博客-CSDN博客【精选】【图像配准】点云配准ICP算法介绍:基础流程、ICP算法的变种_icp算法流程-CSDN博客点云配准(一)--- ICP算法理解_icp算法点云匹配_打着灯笼摸黑的博客-CSDN博客【精选】对ICP、PL-ICP、NICP、IMLS-ICP匹配算法的解析-CSDN博客【精选】点云配准(PC
2023-11-05 10:50:46 137
原创 机器视觉-标定篇
其中:(u,v)是特征点的图像坐标,(u0,v0) 光轴中心的图像坐标,(kx ky )是X 轴,Y 轴方向的放大系数,(xc yc zc) 是特征点在摄像机坐标系下坐标, Mc 是摄像机内参数矩阵。最常用的自适应阈值分割是Otsu方法,该方法使用统计学的方法确定最优的阈值,适用于一般的图像,但是不太适合于棋盘格上激光条纹的分割。选取激光条纹中心线上的两个点作为激光条纹的特征点,为了提高激光条纹中心线的提取精度,利用最小二乘法拟合方法对细化后的激光条纹直线进行处理。
2023-09-21 18:52:17 567
原创 C++回顾录04-构造函数
有一种特殊的成员函数,它的名字和类名相同,没有返回值,不需要用户显式调用(用户也不能调用),而是在创建对象时自动执行。这种特殊的成员函数就是构造函数(Constructor)。
2023-09-17 19:20:35 127
原创 C++回顾录03-C++类和对象
但是通过 new 创建出来的对象就不一样了,它在堆上分配内存,没有名字,只能得到一个指向它的指针,所以必须使用一个指针变量来接收这个指针,否则以后再也无法找到这个对象了,更没有办法使用它。在类的外部(定义类的代码之外),只能通过对象访问成员,并且通过对象只能访问 public 属性的成员,不能访问 private、protected 属性的成员。,如果程序中要用到类,必须提前说明,或者使用已存在的类(别人写好的类、标准库中的类等),C++语法本身并不提供现成的类的名称、结构和内容。创建对象的过程也叫类的。
2023-09-17 16:44:17 178
原创 严重性 代码 说明 项目 文件 行 禁止显示状态错误 C2440 “=”: 无法从“const char [7]”转换为“char *” Cplusplus D:\study\Cplusplus01
在 C 中,字符串文字的类型是数组char,但在C++,它是数组const char。
2023-09-17 15:45:42 788
原创 3D视觉到三维视觉之结构光
2D视觉技术主要在二维空间下完成工作,三维信息基本上没有得到任何利用,而三维信息才真正能够反映物体和环境的状态,也更接近人类的感知模式。近年来,学术界和工业界推出了一系列优秀的算法和产品,被广泛应用到各个领域。每年和3D视觉相关主题的文章数量保持在十分之一左右,主要关注3D的识别与分割、单目图像深度图的生成、3D物体检测、语义SLAM、三维重建、结构光等。工业界:3D视觉技术被广泛应用到人脸识别、智能机器人、自动驾驶、AR等领域,国内外相关公司推出了一系列产品。
2023-09-16 17:26:26 1014
原创 C++回顾录02
程序的执行过程可以认为是多个函数之间的相互调用过程,它们形成了一个或简单或复杂的调用链条,这个链条的起点是 main(),终点也是 main()。最后需要说明的是,对函数作 inline 声明只是程序员对编译器提出的一个建议,而不是强制性的,并非一经指定为 inline 编译器就必须这样做。由于内联函数比较短小,我们通常的做法是省略函数原型,将整个函数定义(包括函数头和函数体)放在本应该提供函数原型的地方。指定内联函数的方法很简单,只需要在函数定义处增加 inline 关键字。
2023-09-13 22:25:01 256
原创 C++与OPENCV实战学习
基于双目视觉的三维重建C++实战_基于视觉sfm+mvs的三维重建程序c++源码(带gui界面)_新缸中之脑的博客-CSDN博客
2023-09-11 21:41:56 316
原创 TCP/IP传输协议学习
1.TCP/IP协议,中文名称:传输控制协议/网际协议,它是internet上所有网络和主机之间进行交流所使用的共同“语言”,是internet上使用的一组完整的标准网络连接协议。2.通常所说的TCP/IP协议实际上包含了大量的协议和应用,有多个独立定义的协议组合在一起。因此,TCP/IP协议并不是指的TCP和IP两个协议,二是指的internet所使用的体系结构或者整个协议簇。3.相对于OSI模型不同的是,TCP/IP更侧重于互连设备间的数据传输,而不是严格的功能层次划分。
2023-09-09 11:06:56 1897 4
原创 卷积概念理解
卷积的重要的物理意义是:一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。卷积的意义:加权叠加。数学意义:现实意义:离散卷积的例子:丢骰子我有两枚骰子:把这两枚骰子都抛出去:求:两枚骰子点数加起来为4的概率是多少?这里问题的关键是,两个骰子加起来要等于4,这正是卷积的应用场景。我们把骰子各个点数出现的概率表示出来:那么,两枚骰子点数加起来为4的情况有:因此,两枚骰子点数加起来为4的概率为:符合卷积的定义,把它写成标准的形式就是:图像处理4.1 原理。
2023-09-09 10:34:44 184
原创 更改注册表exe值后的惨痛经历
装软件时由于执行性文件打不开,搜索教程更改了exefile的值,最后整个电脑崩了,所有EXE都打不开,折腾了5个小时,什么办法都试了,甚至重置电脑都不让,打算拿电脑城修电脑了,突然搜到了一篇和我一样的情况文章,真的是太庆幸了,记录下来给后人做贡献。以后千万不要随便更改注册表。在其他电脑上编辑.txt文件,改后缀为.reg,考到电脑上打开就可以解决了。
2023-09-07 09:37:27 528
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人