距离计算公式

本文介绍了多种距离计算公式,包括欧氏距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离、标准化欧氏距离、马氏距离、余弦距离、皮尔逊相关系数、杰卡德相似系数和汉明距离。这些距离公式在数据挖掘、机器学习等领域有着广泛应用,不同距离度量考虑了量纲、分布、相关性等因素,适用于不同的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧氏距离(Euclidean Distance) 及欧氏距离相似度

欧氏距离是最容易直观理解的距离度量方法,我们小学、初中和高中接触到的两个点在空间中的距离一般都是指欧氏距离。
在这里插入图片描述

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d = 1.4142    2.8284    4.2426    1.4142    2.8284    1.4142

欧氏距离的值是一个非负数, 最大值正无穷, 通常计算相似度的结果希望是[-1,1]或[0,1]之间,

一般可以使用​如下转化公式:
在这里插入图片描述

曼哈顿距离(Manhattan Distance):

在曼哈顿街区要从一个十字路口开车到另一个十字路口,驾驶距离显然不是两点间的直线距离。这个实际驾驶距离就是“曼哈顿距离”。曼哈顿距离也称为“城市街区距离”(City Block distance)。

在这里插入图片描述

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d =   2     4     6     2     4     2

切比雪夫距离 (Chebyshev Distance)

国际象棋中,国王可以直行、横行、斜行,所以国王走一步可以移动到相邻8个方格中的任意一个。国王从格子(x1,y1)走到格子(x2,y2)最少需要多少步?这个距离就叫切比雪夫距离。
在这里插入图片描述

X=[[1,1],[2,2],[3,3],[4,4]];
经计算得:
d =   1     2     3     1     2     1

闵可夫斯基距离 (Minkowski Distance)

闵氏距离不是一种距离,而是一组距离(以上三组距离公式)的定义,是对多个距离度量公式的概括性的表述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值