Privacy-Preserving Electricity Theft Detection Based on Blockchain | IEEE Journals & Magazine | IEEE Xplore
基于区块链的隐私保护窃电检测方案
一.引言
智能电网是一种集成智能技术的先进电网,它使用智能电表收集,分析和处理来自消费者的细粒度功耗数据,以有效地管理能源。智能电网带来了便利,但也带来了严峻的挑战。
首先,智能电网的通信过程会遭受恶意攻击,例如数据篡改攻击和虚假数据注入。另一方面,为检测用户是否有窃电行为,需要对数据进行分析,传统行为会暴露用户的隐私。
针对上述问题,我们提出了⼀种基于区块链的⽆第三⽅的隐私保护的窃电检测⽅案。具体来说,所提出的⽅案使⽤改进的功能加密⽅案来实现窃电检测和负载 监控,同时保护消费者的隐私;通过区块链分布式存储消费者数据,解决数据篡改等安全问题。同时,我们构建了⻓短期记忆⽹络 (LSTM)模型,以提⾼窃电检测的准确性。所提出的⽅案在真实环 境中进⾏了评估,结果表明,在可接受的通信和计算开销内,它在 窃电检测⽅⾯更加准确。我们的系统分析表明,所提出的⽅案可以 抵抗各种安全攻击并保护消费者的隐私。
二.预备知识
A. 安全聚合
Bonawitz 等人提出了一种安全聚合方案,使服务器只能在聚合完成后看到梯度。
任意 SM 之间的密钥协商:每个 SMi 与其他 SM 进行密钥掩码协商。
- 选择一个有效描述的循环群 G,阶为 q,生成元为 g。
- 随机选择一个秘密密钥 x ∈ {1, . . . , q − 1}。
- 计算 y = g^x。
在接收到用户 v 的公钥 xg 后,用户 u 使用其自身的秘密密钥 x 生成 Su,v = H(x(x
g))。
B. Boneh-Lynn-Shacham 短签名
- 密钥生成:从 Z * q 中抽样一个随机数 x 作为私钥,并计算公钥 PK = x · g。
- 签名:将消息 m 映射到循环群 G1中的一个点 H(m)。生成签名 δ = x · H(m)。
- 验证:如果 e(δ, g) = e(H(m), PK),其中 e : G1× G1→ G2是一个双线性映射,则签名有效。否则验证失败。
三.系统架构
A.系统模型
B. 威胁模型
对于上⼀⼩节中提出的系统模型,我们从三个⽅⾯考虑威胁:消费者、SO 和外部攻击者。
1)消费者:恶意消费者可能会伪造他们的⽤电量数据以减少他们的账单。此外,他们可能会与其他消费者或 SO 串通以推断有关受害消费者的敏感信息。此外,恶意消 费者在被发现时可能会拒绝传输数据。对于MN,它可能 会恶意篡改短信上报的数据。
2)SO:SO被假定为诚实但好奇,即它根据协议执⾏操作,但它可能会尝试从消费者那⾥获取细粒度的功耗数据以分析有价值的信息。
3)外部攻击者:外部攻击者可能试图窃听消费者通信以获 取消费者数据,也可能伪造恶意数据危害SO,以及对 SO发起攻击以篡改存储的数据。
C. 设计目标
为了在不依赖第三方的情况下保护消费者数据的安全和隐私,所提出的方案应实现以下设计目标:
隐私保护:对于任何一个消费者,DTM、SO 和其他消费者都无法获得其原始功耗数据。同时,任何实体都无法从加密数据中推断出任何私人信息。
机密性:消费者的数据被加密以进行传输、存储、聚合和盗窃检测,因此即使实体相互串通也无法恢复原始消费者的数据。
数据不可伪造、不可抵赖:消费者的加密数据先签名再传输,确保数据不可伪造,同时传输信息记录在区块链中,实现数据不可证性和数据不可伪造性。
抵御串通攻击:该方案能够抵御智能电网实体相互串通获取消费者用电数据的攻击。
四.协议构造
A.该方案由五个阶段组成:
• 在初始化阶段,SO 划分住宅区并生成系统参数以及神经网络第一层的参数。每个检测区域的SM通过拜占庭容错共识机制选择MN,而SM生成加密和解密密钥。
• 在报告阶段,每个SM在检测周期T = {t1, t2, · · ·td}期间加密功耗数据r(t),然后签名并将加密数据发送到MN中。
• 在聚合阶段,MN验证数据的合法性,然后通过Merkle树构造区块并聚合功耗数据。
• 在判断阶段,SO根据DTM统计数据与MN汇总数据之间的差异来判断某个地区是否存在窃电。
• 在电力盗窃检测阶段,SO 从区块链中读取加密数据,这些数据由在盗窃检测期间疑似电力盗窃区域的每个 SM 报告。加密数据被解密(解密后仍处于密文状态),然后馈送到检测模型以识别电力盗窃消费者。
B. 系统初始化
- 系统参数生成:
- 模型的第一层权重:
SO根据历史诚实和恶意消费者的用电数据训练电力盗窃检测模型,然后保存网络第一层的重量。
权重 W 可以表示为:
d是周期T内报告的数量,n是第一次神经元的数量
- 密钥生成:SM 生成加密密钥;解密密钥;DA;DM; DW 的生成:
SM ⽣成加密密钥和解密密钥
SM配合使⽤安全聚合算法⽣成解密公钥DA,⽤于汇总所有 SM 的功耗读数。同时,每个SM⽣成窃电检测公钥DW
密钥生成;
DA生成:
任意 SM 之间协商密钥掩码,MN 执⾏安全聚合, ⽣成解密公钥DA
-
DW生成:SO将窃电检测模型第⼀层⽹络的权重发布给每个SM, 每个SM⽣成解密公钥,⽆需获取原始功耗数据即可实现盗窃检测。
C. 报告阶段
D. 聚合阶段
第 1 步:MNj 验证签名和时间戳。如果等式。
(10) 和 T Sit = T SMN t
有效,验证通过
否则会失败。为了使验证更有效,MNj可以执行批量验证。
e(δi, g2) = e(H2(Ci[t]||T坐||DWi||PKi), PKi) (10)
• 第 2 步:MNj 执行哈希操作以生成
默克尔树根哈希值。然后 MNj 生成一个新的
块 = (数据||H(数据||时间戳)||时间戳),并将该块广播到其他住宅区 .
• 第 3 步:收到区块后,短信验证区块的哈希值、时间戳和数据,然后发送结果
向其他SM进行验证,以实现SM之间的相互监督。
• 第 4 步:短信将自己的检查结果发送给 MNj。
收集所有SM的反馈并进行检查。如果全部SM同意区块的合法性和完整性,MNj按时间顺序将区块添加到区块链中
订购并将块发送到其他短信。如果存在SM不同意检查结果,MNj检查反馈信息并将块发送到此SM,再次进行第二次检查。
• 步骤5:MNj聚合所有短信的加密数据并解密它以获得当前时间的面积由方程(11)计算。
E. 判决阶段
为了实现高效检测,我们的解决方案将执行电盗窃检测后判别是否有是居民区的电力盗窃。对于每个住宅区,变压器表测量供应给该住宅的电力总量
电力盗窃检测期间的区域,EDTM(t)。同时,MN 汇总了所有上传的读数住宅区SMs,P
i ESMi(t),SO确定等式(12)是否存在偷电:其中ET L(t)是传输线中的技术损耗(TL)在住宅区内,ε是TL的计算误差。SO可以使用历史数据来分析技术损失,虽然存在许多方法[7]来计算技术损失。如果等式(12)有效,SO认为存在窃电当前区域。之后SO读取功耗
每个 SMi 上传的数据在电力区块链中盗窃检测。
F. 电力盗窃检测阶段X是输⼊向量,W是权重矩阵,然后 b是添加的偏置向量。这个操作可以看作是输⼊向量x和权重矩阵的每⼀列W的内积.也可以看做⼀组nd-equations,其中输⼊向量X是未知 数和权重矩阵W是系数,因为n⼩于d, 输⼊向量X⽆法解决。
五.安全性分析
场景 1:攻击者无法推断出消费者电力消耗的隐私。
场景 2:消费者的细粒度电力消耗数据在传输和存储过程中无法被伪造和篡改等。
场景 3:所提出的方案不需要第三方,并且能够抵抗智能电网实体的合谋攻击。