一、在Jupyter初始化过程中自动加载常用包的设置方法
在每一节课程的开头,我们都要导入常用包,由于这项工作重复而固定,因此我们也可以通过配置jupyter(准确来说应该是ipython)的startup文件,来使得每次新创建一个ipy文件时,都能够自动加载配置好的包,从而就能免去每节开头导入包的相关操作。(所以说,懒惰是推动技术进步的不竭动力。)相关方法如下:
1. 找到startup文件夹
在当前用户主目录下,找到.ipython
文件夹,然后进入到profile_default
文件夹内,并找到startup
文件夹。此处如果profile_default内没有startup文件夹,自己新建一个即可。
2. 创建start.py文件
接下来,在startup文件夹内,创建一个start.py文件。关于创建py文件的方法此前介绍过,此处我们只需先创建一个txt文件,然后将其名称和后缀改为start.py
即可。
3. 输入每次初始化时需要执行的代码
在start.py中输入每次初始化时导入包的代码,相关代码如下:
# 随机模块
import random
# 时间模块
import time
# 数学模块
import math
# 绘图模块
import matplotlib as mpl
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# numpy
import numpy as np
# pandas
import pandas as pd
# pytorch
import torch
from torch import nn,optim
import torch.nn.functional as F
from torch.utils.data import Dataset,TensorDataset,DataLoader
# 自定义模块
# 存放所有自定义的函数和Model
# 存放在与运行文件同一个文件夹下
from myTorchLearning import *
# 导入以下包从而使得可以在jupyter中的一个cell输出多个结果
from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
我们可以使用记事本打开.py文件,然后复制上述内容然后保存。
4. 重启ipy,检测是否生效
然后需要重启ipy kernel。
5. 测试初始化配置是否生效
torch.tensor(1)
至此也验证了初始化设置成功,每次创建jupyter文件时都将自动导入我们设置好的第三方库,即可免去每节开始的导包代码。