#AIGC#text2video文生视频,开源DragNUWA:通过集成文本、图像和轨迹对视频生成进行细粒度控制

DragNUWA是一种视频生成模型,通过整合文本、图像和轨迹信息,实现对视频内容的语义、空间和时间精细控制。研究者提出轨迹采样器、多尺度融合和自适应训练策略,解决开放域视频控制的局限。详情可参考https://arxiv.org/abs/2308.08089。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DragNUWA:通过集成文本、图像和轨迹对视频生成进行细粒度控制
论文地址:https://arxiv.org/abs/2308.08089

DragNUWA 使用户能够直接操纵图像中的背景或对象,模型将这些动作无缝地转换为相机运动或对象运动,生成相应的视频。

DragNUWA,一个开放域的视频生成模型。为了解决现有作品中控制粒度不足的问题,我们同时引入文本、图像和轨迹信息,从语义、空间和时间的角度对视频内容进行细粒度的控制。为解决目前研究中的有限开放域射控问题,我们模型的轨迹有三个方面:一个轨迹采样器(TS),使开放域控制的任意轨迹,多尺度融合(MF)控制在不同粒度的轨迹,和自适应训练
(AT)策略,以产生一致的视频轨迹。
这里是引用

在这里插入图片描述

效果

拖动形成轨迹,轨迹形成视频、 变化相机角度

以拖动(drag)的方式给出运动轨迹,DragNUWA 是一个集成了文本、图像和轨迹控制的系统,可以从语义、空间和时间的角度实现可控的视频生成。

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值