#GPU|LLM|AIGC#集成显卡与独立显卡|显卡在深度学习中的选择与LLM GPU推荐

本文比较了独立显卡和集成显卡在显存、性能和适用场景上的差异,并强调了在深度学习任务中选择NVIDIACUDA-enabledGPU的重要性,如RTX3090、RTX4090等,特别是对于LLMGPU推荐中的A系列和高端型号。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

区别

核心区别:显存,也被称作帧缓存。独立显卡拥有独立显存,而集成显卡通常是没有的,需要占用部分主内存来达到缓存的目的

集成显卡
是集成在主板上的,与主处理器共享系统内存。
一般会在很多轻便薄型的笔记本与低端的台式电脑上得到广泛的应用
性能较低,适合一般办公和基本图形任务。

独立显卡
一块独立的图形处理器,有自己的显存,并且不与主处理器共享内存。
独立显卡通常性能更强大,适合处理复杂的图形和游戏。在一些专业应用和高性能需求的场景中,独立显卡往往能够提供更好的性能和图形处理能力。

在这里插入图片描述

深度学习任务用什么

深度学习
在进行深度学习或其他大规模模型训练时,通常需要更强大的图形处理单元,如NVIDIA的CUDA-enabled GPU或AMD的类似设备。
在这里插入图片描述

LLM GPU推荐

推荐
6BLLM使用:RTX 3090, RTX 4090, A10, A30
34BLLM使用:4 × RTX 4090, A800 (80 GB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值