# langchain # MMR解决检索冗余问题、实现多样性检索

MaxMarginalRelevanceExampleSelector 笔记

概述

MaxMarginalRelevanceExampleSelector 是一个选择器,用于从一组候选示例中选择出与输入最相关且具有多样性的示例。它通过计算示例与输入之间的语义相似度,然后迭代地选择示例,同时对与已选择示例相似度过高的候选项施加惩罚。

核心概念
  • 余弦相似度:用于衡量示例嵌入向量与输入嵌入向量之间的相似度。
  • 边际相关性:衡量每个候选示例与输入的相似度,同时考虑与已选择示例的多样性。
  • 多样性惩罚:对与已选择示例相似度过高的候选项施加惩罚,以增加选择的多样性。
使用步骤
  1. 导入相关库:导入 langchain 相关的模块和类。
  2. 定义提示模板 (PromptTemplate):创建一个模板,用于格式化输入和输出。
  3. 准备候选示例 (examples):准备一组示例数据,每个示例包含输入和输出。
  4. 创建选择器实例 (MaxMarginalRelevanceExampleSelector.from_examples):
    • 提供候选示例列表。
    • 指定嵌入类(如
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值