pytorch
pytorch
两分先生
这个作者很懒,什么都没留下…
展开
-
torch.clamp()简要介绍
定义torch.clamp(input,min,max)用法将输入input每个元素的值限制在min和max之间,小于min或者大于max的值分别替换为min和max示例import torcha = torch.tensor([[2,3,1],[0,5,6]])b = torch.clamp(a,2,5)print(a)print(b)>>>tensor([[2, 3, 1], [0, 5, 6]])tensor([[2, 3原创 2022-01-16 20:58:10 · 1448 阅读 · 0 评论 -
torch.full()简要介绍
定义torch.full(size,num)用法话不多说,直接看示例示例import torcha = torch.full((4,4),3)b = torch.full((5,6),9)print(a)print(b)>>>tensor([[3, 3, 3, 3], [3, 3, 3, 3], [3, 3, 3, 3], [3, 3, 3, 3]])tensor([[9, 9, 9,原创 2022-01-16 20:48:52 · 1074 阅读 · 0 评论 -
torch.sort()和torch.argsort()简要介绍
定义torch.sort(input,dim,descending) torch.argsort(input,dim,descending)用法torch.sort:对输入数据排序,返回两个值,即排序后的数据values和其在原矩阵中的坐标indices torch.argsort:同torch.sort()返回的indices参数input:输入矩阵 dim:排序维度,默认为dim=1,即对行排序 descending:排序方式(从小到大和从大到小),默认为从小到大排序(即de原创 2022-01-16 20:42:44 · 1947 阅读 · 0 评论 -
torch.zeros_like()和torch.ones_like()简要介绍
定义torch.zeros_like(input) torch.ones_like(input)用法分别生成和输入数据维度一致的全为0或全为1的内容示例import torcha = torch.tensor([[1,2,3],[4,5,6]])print(torch.zeros_like(a))print(torch.ones_like(a))>>>tensor([[0, 0, 0], [0, 0, 0]]) tensor(原创 2022-01-15 23:25:19 · 1133 阅读 · 0 评论 -
torch.normal()、torch.randn()和torch.rand()简要介绍
定义torch.normal(means,std,size)torch.randn(size)torch.rand(size)用法torch.normal():返回从均值means和标准差std的离散正态分布中抽取随机张量, torch.randn():生成满足标准正态分布(0~1)的随机张量 torch.rand():返回从区间[0, 1)的均匀分布中抽取的一组随机数示例import torchimport numpy as npa = torch.normal(10原创 2022-01-15 23:14:37 · 2451 阅读 · 0 评论 -
torch.sum()、np.sum()和sum()简要介绍
定义torch.sum(input1,dim,keepdim) np.sum(input2,axis,keepdims) sum(input3,b)用法对矩阵数据求和input1:输入矩阵,tensor类型 dim:要求和的维度,默认求所有元素之和 keepdim:求和之后,被求和的维度元素个数为1,所以要被去掉,若要保留,应keepdim=true input2:输入矩阵,ndarray类型 axis:要求和的维度,同dim keepdims:同keepdim input3:原创 2022-01-15 22:48:39 · 3992 阅读 · 0 评论 -
torch.stack()简要介绍
定义torch.stack((x,y),dim)用法stack操作后会增加维度数量,在dim维度上对x和y进行堆叠import torch a = torch.tensor([[1,2,3],[4,5,6],[7,8,9]])b = torch.tensor([[11,22,33],[44,55,66],[77,88,99]])print(a)print(b) >>tensor([[1, 2, 3], [4, 5, 6], [7,原创 2022-01-07 12:05:41 · 940 阅读 · 0 评论 -
torch.cat()简要介绍
定义torch.cat((x,y),dim)用法操作后不会增加维度数量,但会增加维度值。在dim维度上对x和y进行拼接import torcha = torch.tensor([[1,2,3],[4,5,6],[7,8,9]])b = torch.tensor([[11,22,33],[44,55,66],[77,88,99]])print(a)print(b)>>tensor([[1, 2, 3], [4, 5, 6], [7,原创 2022-01-07 12:16:45 · 916 阅读 · 0 评论 -
torch.sort()和torch.argsort()简要介绍
定义1torch.sort(a,dim,descending)用法1输入a,在dim维进行排序,descending控制是否降序,默认为False。输出排序后的值以及对应值在原a中的下标,示例1import torcha = torch.tensor([[10,2,3],[4,6,5],[7,8,9]])print(a)>>tensor([[10, 2, 3], [ 4, 6, 5], [ 7, 8, 9]])在原创 2022-01-07 13:50:26 · 16706 阅读 · 4 评论