训练营第三十四天贪心(完结)
738.单调递增的数字
题目
当且仅当每个相邻位数上的数字 x
和 y
满足 x <= y
时,我们称这个整数是单调递增的。
给定一个整数 n
,返回 小于或等于 n
的最大数字,且数字呈 单调递增 。
示例 1:
输入: n = 10
输出: 9
示例 2:
输入: n = 1234
输出: 1234
示例 3:
输入: n = 332
输出: 299
提示:
0 <= n <= 109
解答
从右向左遍历,如果前一个比后一个大,就把前一个-1,后一个变成9
例:52 -》 49
错误解法
虽然大体思路如此,但是忽略了特殊情况
例:100 -》 如果相等,那么就会变成090即90而不是99,所以只要发生了调换,就应该从调换位置开始将后面所有的都变成9
class Solution {
//101
//100
public int monotoneIncreasingDigits(int n) {
String temp = String.valueOf(n);//先转为字符串
char[] nums = temp.toCharArray();//再将每一位转为char数组
for (int i = nums.length - 1; i > 0; i--) {
if (nums[i - 1] > nums[i]){
nums[i] = '9';
nums[i - 1] -= 1;
}
}
return Integer.parseInt(String.valueOf(nums));
}
}
正确解法
class Solution {
public int monotoneIncreasingDigits(int n) {
String temp = String.valueOf(n);//先转为字符串
char[] nums = temp.toCharArray();//再将每一位转为char数组
int index = nums.length;
for (int i = nums.length - 1; i > 0; i--) {
if (nums[i - 1] > nums[i]) {
nums[i - 1] -= 1;
index = i;
}
}
for (int i = index; i < nums.length; i++) {
nums[i] = '9';
}
return Integer.parseInt(String.valueOf(nums));
}
}
968.监控二叉树
题目
给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
示例 1:
输入:[0,0,null,0,0]
输出:1
解释:如图所示,一台摄像头足以监控所有节点。
示例 2:
输入:[0,0,null,0,null,0,null,null,0]
输出:2
解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。
提示:
- 给定树的节点数的范围是
[1, 1000]
。 - 每个节点的值都是 0。
解答
局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
后序遍历
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
情况1:左右节点都有覆盖
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
情况2:左右节点至少有一个无覆盖的情况
如果是以下情况,则中间节点(父节点)应该放摄像头:
- left == 0 && right == 0 左右节点无覆盖
- left == 1 && right == 0 左节点有摄像头,右节点无覆盖
- left == 0 && right == 1 左节点无覆盖,右节点摄像头
- left == 0 && right == 2 左节点无覆盖,右节点覆盖
- left == 2 && right == 0 左节点覆盖,右节点无覆盖
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
if (left == 0 || right == 0) {
result++;
return 1;
}
情况3:左右节点至少有一个有摄像头
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
- left == 1 && right == 2 左节点有摄像头,右节点有覆盖
- left == 2 && right == 1 左节点有覆盖,右节点有摄像头
- left == 1 && right == 1 左右节点都有摄像头
代码如下:
if (left == 1 || right == 1) return 2;
从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了
情况4:头结点没有覆盖
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
class Solution {
int res=0;
public int minCameraCover(TreeNode root) {
// 对根节点的状态做检验,防止根节点是无覆盖状态 .
if(minCame(root)==0){
res++;
}
return res;
}
/**
节点的状态值:
0 表示无覆盖
1 表示 有摄像头
2 表示有覆盖
后序遍历,根据左右节点的情况,来判读 自己的状态
*/
public int minCame(TreeNode root){
if(root==null){
// 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头
return 2;
}
int left=minCame(root.left);
int right=minCame(root.right);
// 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头
if(left==2&&right==2){
//(2,2)
return 0;
}else if(left==0||right==0){
// 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头
// (0,0) (0,1) (0,2) (1,0) (2,0)
// 状态值为 1 摄像头数 ++;
res++;
return 1;
}else{
// 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,
// 那么本节点就是处于被覆盖状态
return 2;
}
}
}
简化分支
class Solution {
static int ans;
public int minCameraCover(TreeNode root) {
ans = 0; // 初始化
if(f(root) == 0) ans ++;
return ans;
}
// 定义 f 函数有三种返回值情况
// 0:表示 x 节点没有被相机监控,只能依靠父节点放相机
// 1:表示 x 节点被相机监控,但相机不是放在自身节点上
// 2:表示 x 节点被相机监控,但相机放在自身节点上
public static int f(TreeNode x) {
if(x == null) return 1; // 空树认为被监控,但没有相机
// 左右递归到最深处
int l = f(x.left);
int r = f(x.right);
// 有任意一个子节点为空,就需要当前节点放相机,不然以后没机会
if(l == 0 || r == 0) {
ans ++; // 放相机
return 2;
}
// 贪心策略,左右子树都被监控,且没有监控到当前节点,
// 那么最有利的情况就是将相机放置在当前节点父节点上,
// 因为这样能多监控可能的子树节点和父父节点
if(l == 1 && r == 1) return 0;
// 剩下情况就是左右子树有可能为 2,即当前节点被监控
return 1;
}
}