理解动态规划算法

动态规划的思想 是将一个问题分解为若干子问题,并且子问题之间还有重叠,通过先求解这些子问题的最优解,将原问题的最优解通过这些子问题的最优解构造出来,从而得到原问题的最优解。
由此可以得到动态规划算法的应用场景:若求一个问题的最优解(通常是求最大值或者最小值),而且该问题能够分解成若干个子问题,并且子问题之间还有重叠的更小的子问题,就可以考虑用动态规划来解决这个问题。

由此总结一下判断一个问题是否能用动态规划来解决的基本步骤:
1.看这个问题是否是求最优解(最大值或者最小值)
2.看该问题能否分解为若干个子问题,且整体问题的最优解是可以由各个子问题的最优解得出的。(最优子结构)
3.看分解的各个子问题之间是否有重叠(这不是应用动态规划的必要条件,但如果子问题没有重叠,那么使用动态规划算法与其他算法相比就没有什么优势,完全可以直接用分治思想解决,不必要用动态规划)

如果一个问题满足以上三个特征,那么就可以用动态规划的思想解决,使用动态规划的步骤为
1.划分状态,即划分子问题。把问题划分为若干个小问题,划分时要注意,较大的问题的最优解一定可以由较小的问题的最优解得到。最后的求解思路就是先得到小问题的最优解,然后由小问题的最优解逐步构造大问题的最优解,最后得到想解决问题的最优解。
2.状态表示,即如何让计算机理解子问题。确定怎么描述各个不同大小的问题的状态,将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来,作为得到最优解的必要信息。
3.找出状态转移方程,

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 动态规划算法是一种解决最优化问题的方法,适用于具有重叠子问题和最优子结构的情况。它的核心思想是将原问题划分为若干个子问题,并先求解子问题的最优解,再由子问题的最优解推导出原问题的最优解。 以下是一个使用动态规划算法解决背包问题的MATLAB代码示例: ```MATLAB function [maxValue, selectedItems] = knapsackProblem(values, weights, capacity) % values: 物品的价值数组 % weights: 物品的重量数组 % capacity: 背包的容量 numItems = length(values); % 物品的数量 % 创建一个矩阵来保存子问题的最优解 dp = zeros(numItems+1, capacity+1); % 开始填充矩阵 for i = 1:numItems for j = 1:capacity if weights(i) <= j % 当前物品可以放入背包,比较放入和不放入的价值,取较大者 dp(i+1, j+1) = max(dp(i, j+1-weights(i)) + values(i), dp(i, j+1)); else % 当前物品不能放入背包,继承上一次的最优解 dp(i+1, j+1) = dp(i, j+1); end end end % 获取最优解的价值 maxValue = dp(numItems+1, capacity+1); % 根据最优解的价值回溯得到被选中的物品 selectedItems = zeros(numItems, 1); j = capacity; for i = numItems:-1:1 if dp(i+1, j+1) > dp(i, j+1) selectedItems(i) = 1; j = j - weights(i); end end end ``` 以上代码使用一个二维矩阵dp来保存子问题的最优解,矩阵的第i行第j列表示在前i个物品中选择使重量不超过j的物品时的最大价值。最终,函数返回的maxValue表示最优解的价值,selectedItems表示被选中的物品。 ### 回答2: 动态规划是一种常用的求解最优化问题的方法,它通过将问题分解成多个子问题,并解决每个子问题,以求得原始问题的最优解。 以下是一个使用动态规划算法解决最长递增子序列问题的Matlab代码示例: ```matlab function [L, LIS] = longestIncreasingSubsequence(nums) % 动态规划求解最长递增子序列问题 n = length(nums); L = ones(1, n); LIS = cell(1, n); for i = 2:n for j = 1:i-1 if nums(i) > nums(j) && L(i) < L(j) + 1 L(i) = L(j) + 1; LIS{i} = [LIS{j}, nums(i)]; end end end % 寻找最长递增子序列 maxLen = max(L); idx = find(L == maxLen, 1, 'last'); LIS = LIS{idx}; end ``` 在这个代码中,我们使用两个数组`L`和`LIS`分别保存当前位置的最长递增子序列长度和对应的最长递增子序列。 首先,初始化数组`L`为1,表示每个元素自身就是一个递增子序列。然后,我们从第二个元素开始,遍历所有元素。 对于遍历到的当前元素`nums(i)`,我们再次遍历该元素之前的所有元素`nums(j)`。如果`nums(i)`大于`nums(j)`并且`L(i) < L(j) + 1`,则更新`L(i)`为`L(j) + 1`,同时将当前最长递增子序列`LIS{j}`与`nums(i)`拼接,赋值给`LIS{i}`。 最后,我们找到`L`中最大值,以及对应的索引`idx`,即为最长递增子序列的长度和最后一个元素的索引。通过`LIS{idx}`即可得到最长递增子序列。 希望以上代码能够帮助你理解动态规划算法在Matlab中的应用。 ### 回答3: 动态规划是一种求解最优化问题的算法。在使用动态规划算法时,首先需要确定问题的状态以及状态转移方程。然后,通过迭代计算每个状态对应的最优值。最后,根据最优值与状态转移方程,逆向推导出最优解。以下是一个用MATLAB实现动态规划算法的示例代码: ```matlab function [optimalValue, optimalSolution] = dynamicProgramming(input) % 获取输入数据,例如需要求解的目标值和状态转移方程中的参数 % ... % 初始化DP表 dpTable = zeros(size(input)); % 计算边界情况下的最优值 % ... % 迭代计算每个状态的最优值 for i = 1:size(input, 1) for j = 1:size(input, 2) % 根据状态转移方程计算最优值 dpTable(i, j) = calculateOptimalValue(i, j, dpTable); end end % 根据DP表逆向推导出最优解 optimalSolution = calculateOptimalSolution(dpTable); % 返回最优值和最优解 optimalValue = dpTable(end); end function optimalValue = calculateOptimalValue(i, j, dpTable) % 根据状态转移方程计算最优值 % ... end function optimalSolution = calculateOptimalSolution(dpTable) % 根据DP表逆向推导出最优解 % ... end ``` 需要注意的是,上述代码只是一个示例,实际问题的状态和状态转移方程可能有所不同,需要根据具体问题进行修改。此外,计算最优值和最优解的函数`calculateOptimalValue`和`calculateOptimalSolution`也需要根据具体问题进行实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

后期英雄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值