【蓝桥杯练习--DP】01背包

本文探讨了01背包问题的本质——有限集合求最值,详细介绍了朴素算法及其分析,包括状态表示、集合定义和状态计算原则。接着,文章阐述了动态规划的优化方法,指出由于每层计算仅依赖上一层,可以实现滚动存储以提高效率,避免暴力枚举带来的复杂度。
摘要由CSDN通过智能技术生成

01背包

本质是:有限集合求最值的问题

1 朴素算法

(用于分析 之后再根据空间进行优化 时间上无法再优化)

从两个角度进行分析

  • 状态表示:第一维只考虑前i个物品,后面n维是限制(如体积的限制)

    • 集合(表示哪个集合):所有只考虑前i个物品,且总体积不超过j的选法的集合

      01背包是最简单的情况 只将情况分为两种 选或不选

    • 属性(存的值与集合的关系):Max=f(i,j)

  • 状态计算(集合的划分/化整为零的过程)

    ​ 原则:找不同点,即是否选择最后一个物品 -> 不重复、不遗漏

    • (左)所有不选第i个物品的方案:
      • 满足f(i,j)的限制 即从i~j中选,并且体积<=j
      • 属于左边 不包括i => 1~i-1,<=j 即f(i-1,j)
    • (右)所有选第i个物品的方案
      • 变化部分:变化部分最大 则最后结果最大 => f(i-1,j-vi)+wi
      • 不变部分:都是i(每个方案都包括物品i)
    • 最后的结果f(i,j) = max(f(i-1,j), f(i-1,vi)+wi)

如果使用暴力算法 依次枚举2n

//暴力写法 二维
#include <iostream>

using namespace std;

const int N = 10010;

int n,m;
int v[N],w[N];
int f[N][N];    //每次方案的最大值

int 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值