02.15


#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 10000100;
const int inf = 1e9;
int mod = 998244353;
int T;
typedef pair<int,int> P;
ll b[MAXN];

struct node{
    ll val, sum, id;
}N[MAXN];

ll ans[MAXN];

int main()
{
    memset(ans,0,sizeof(ans));
    ll n, p, x, y, z, bf;
    cin >> n >> p >> x >> y >> z >> bf;
    N[1] = {bf,bf,1};
    ans[1] = bf;
    b[1] = bf;
    ll top = 1;
    for(ll i = 2;i <= n;i++)
    {
        b[i] = (x * ans[i-1] % p + y * b[i-1] % p + z % p) % p;
        while(top && N[top].val > b[i]){
            top--;
        }
        ll tmp = (N[top].sum + b[i]*(i-N[top].id)) % mod;
        N[++top] = {b[i],tmp,i};
        ans[i] = (ans[i-1]+tmp) % mod;
    }
    ll res = 0;
    for(ll i = 1;i <= n;i++)
    {
        res ^= ans[i];
        //printf("%d ",ans[i]);
    }
    //printf("\n");
    printf("%lld\n",res);
    return 0;
}


G 单调栈

题目给出b[i]的递推公式

利用单调栈维护某个区间内的最小值

每个N[i].val贡献为(i-N[top].val)这么多次,剩下的由N[top].sum贡献

D 最小生成树

注意先比较有向边的终点,在比较起点

用并查集判断回路

J 差分+分类讨论

题意:

给定一个长度为 n 的数列,n 为偶数,保证每个元素在 [ 1 , k ] 之间

每次操作可以把某个位置的数字变成 [ 1 , k ] 内的任意数字

要求让这个数列满足:对于所有的 i ∈ [ 1 , n/2 ],a[i] + a[n-i+1] 是一个定值

问最少的操作次数

枚举定值x

1.若x ∈ \in [2,min(a[i],a[n+1-i])] || x ∈ \in [max(a[i],a[n+1-i]+k)+1,2*k] 需要改动两个数 这一范围内所有数+2

2.若x ∈ \in [min(a[i],a[n+1-i])+1,max(a[i],a[n+1-i])+k] 需要改动一个数字,这一范围内所有数+1

3 若x == a[i]+a[n+1-i] 不改

b[i] = a[i]-a[i-1]

差分 区间改变:[l,r]区间内数+2 vis[l] += 2 vis[r+1] -= 2

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 2e5+100;
const int inf = 1e9;
ll mod = 998244353;
int T;
typedef pair<int,int> P;
ll b[MAXN];

int a[MAXN];
int vis[2*MAXN];

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(vis,0,sizeof(vis));
        int n, k;
        scanf("%d%d",&n,&k);
        for(int i = 1;i <= n;i++)
        {
            scanf("%d",&a[i]);
        }
        vis[1] = 0;
        for(int i = 1;i <= n/2;i++)
        {
            int l = min(a[i],a[n+1-i]);
            int r = max(a[i],a[n+1-i])+k;
            int sum = a[i] + a[n+1-i];
            vis[2] += 2; vis[l+1] -= 2;
            vis[l+1]++; vis[r+1]--;
            vis[r+1] += 2; vis[2*k+1] -= 2;
            vis[sum]--; vis[sum+1]++;
        }
        int ans = 1e9;
        for(int i = 2;i <= 2*k;i++)
        {
            vis[i] += vis[i-1];
            ans = min(ans,vis[i]);
        }
        printf("%d\n",ans);
    }
    return 0;
}


L

一个长度大于等于2的十进制整数x,如果能整除某个非零个位数y,那么只需满足x的最后两位能整除y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值