思路:二叉搜索树中序遍历是递增的,现在题目给出的序列就是自增的。我们可以遍历每个数字 i,将该数字作为树根,将 1 ~ (i−1) 序列作为左子树,将 (i+1) ~ n 序列作为右子树。接着我们可以按照同样的方式递归构建左子树和右子树。
class Solution {
public int numTrees(int n) {
if(n <= 2) return n;
int[] dp = new int[n +1];
dp[0] = 1;
dp[1] = 1;
dp[2] = 2;
//首先一定是遍历节点数,依然节点数为i的状态是依靠 i之前节点数的状态。
// 然后就是遍历i里面每一个数作为头结点的状态了,用j来遍历。
//一共i个节点,对于根节点j时,左子树的节点个数为j-1,右子树的节点个数为i-j
for(int i = 3; i <= n; i++){
for(int j = 1; j <= i; j++){
dp[i] += (dp[j-1] * dp[i-j]);
}
}
return dp[n];
}
}