岛屿问题总结

这篇博客详细介绍了在二叉树和网格结构中使用深度优先搜索(DFS)的基本模板,包括访问相邻节点和判断basecase的逻辑。同时,提供了两种优化方法:一种是通过标记已访问节点来避免使用额外的visited数组,另一种是通过原地修改数组来减少空间复杂度。文章还展示了如何运用DFS解决实际问题,如计算岛屿数量和求解岛屿的最大面积,并给出了相应的代码实现。
摘要由CSDN通过智能技术生成

树和网格的DFS模板

二叉树的 DFS 有两个要素:「访问相邻结点」和「判断 base case」
访问相邻结点:递归访问左右子树
判断 base case:一般来说,二叉树遍历的 base case 是 root == null。这样一个条件判断其实有两个含义:一方面,这表示 root 指向的子树为空,不需要再往下遍历了。另一方面,在 root == null 的时候及时返回,可以让后面的 root.left 和 root.right 操作不会出现空指针异常

void traverse(TreeNode root) {
    // 判断 base case
    if (root == null) {
        return;
    }
    // 访问两个相邻结点:左子结点、右子结点
    traverse(root.left);
    traverse(root.right);
}

网格的 DFS 有两个要素:「访问相邻结点」和「判断 base case」
访问相邻结点:四周
判断 base case:判断是否越界 判断是不是岛屿

void dfs(int[][] grid, int r, int c) {
    // 判断 base case
    if (!inArea(grid, r, c)) {
        return;
    }
    // 如果这个格子不是岛屿,直接返回
    if (grid[r][c] != 1) {
        return;
    }
    grid[r][c] = 2; // 将格子标记为「已遍历过」
    
    // 访问上、下、左、右四个相邻结点
    dfs(grid, r - 1, c);
    dfs(grid, r + 1, c);
    dfs(grid, r, c - 1);
    dfs(grid, r, c + 1);
}

// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
    return 0 <= r && r < grid.length 
        	&& 0 <= c && c < grid[0].length;
}

200. 岛屿数量

class Solution {
    public int numIslands(char[][] grid) {
        if(grid.length == 0 || grid[0].length == 0){
            return 0;
        }
        int m = grid.length, n = grid[0].length;
        boolean[][] visited = new boolean[m][n];
        int count = 0;
        for(int i = 0; i < m; i++){
            for(int j = 0; j < n; j++){
                if(grid[i][j] == '1' && !visited[i][j]){
                    dfs(grid, i, j, visited);
                    count++;
                }
            }
        }
        return count;
        
    }
    public void dfs(char[][] grid, int i, int j, boolean[][] visited){
        if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || visited[i][j] || grid[i][j] == '0'){
            return;
        }
        visited[i][j] = true;
        dfs(grid, i+1, j, visited);
        dfs(grid, i-1, j, visited);
        dfs(grid, i, j+1, visited);
        dfs(grid, i, j-1, visited);

    }
}

直接原地修改数组,节省visited数组的空间复杂度。

class Solution {
    public int numIslands(char[][] grid) {
        if(grid.length == 0 || grid[0].length == 0) return 0;
        int m = grid.length, n = grid[0].length;
        int count = 0;
        for(int i = 0; i < m; i++){
            for(int j = 0; j <n; j++){
                if(grid[i][j] == '1'){
                    dfs(grid, i, j);
                    count++;
                }
            }
        }
        return count;
    }
    public void dfs(char[][] grid, int i, int j){
        if(i < 0 || i >= grid.length || j < 0 || j >= grid[0].length || grid[i][j] == '0'){
            return;
        }
        grid[i][j] = '0';
        dfs(grid, i+1, j);
        dfs(grid, i-1, j);
        dfs(grid, i, j+1);
        dfs(grid, i, j-1);
    }
}

695. 岛屿的最大面积

class Solution {
    public int maxAreaOfIsland(int[][] grid) {
        int area = 0;
        int[][] visited = new int[grid.length][grid[0].length];
        for(int i = 0; i < grid.length; i++){
            for(int j  = 0; j < grid[0].length; j++){
                if(grid[i][j] == 1 && visited[i][j] == 0){
                    area = Math.max(area, dfs(grid, i, j, visited));
                }
            }
        }
        return area;
    }

    public int dfs(int[][] m, int i, int j, int[][] visited){
        if (i < 0 || j < 0 || i == m.length || j == m[0].length || m[i][j] == 0 || visited[i][j] == 1) {
            return 0;
        }
        visited[i][j] = 1;
        int[] di = {1, -1, 0, 0};
        int[] dj = {0, 0, 1, -1};
        int ans = 1;
        for(int index = 0; index < 4; index++){
            int next_i = i + di[index], next_j = j + dj[index];
            ans += dfs(m, next_i, next_j, visited);
        }
        return ans;
    }
}

不使用visited数组,减少空间复杂度

class Solution {
    public int maxAreaOfIsland(int[][] grid) {
        if(grid.length == 0 || grid[0].length == 0){
            return 0;
        }
        int area = 0;
        for(int i = 0; i < grid.length; i++){
            for(int j = 0; j < grid[0].length; j++){
                if(grid[i][j] == 1){
                    // 求最大面积
                    area = Math.max(area, dfs(grid, i, j));
                }
            }
        }
        return area;
    }

    // 求一个岛屿的面积
    public int dfs(int[][] grid, int i, int j){
        if (i < 0 || j < 0 || i >= grid.length || j >= grid[0].length || grid[i][j] != 1){
            return 0;
        }
        grid[i][j] = 2;
        return 1 
            + dfs(grid, i+1, j)
            + dfs(grid, i-1, j)
            + dfs(grid, i, j+1)
            + dfs(grid, i, j-1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值