- 博客(4)
- 收藏
- 关注
原创 Spacetime Gaussian阅读笔记
通过在3D高斯模型的基础上加入时间维度的运动/旋转特性,并引入特征扩散技术以替代传统的球谐函数,本文方法能够在不牺牲质量的前提下达到更高的渲染速度和压缩模型的存储大小。在动态场景的视图合成中,如何在保持高分辨率和实时渲染的同时,减少存储需求。该方法在一定程度上基于先前的3D高斯扩散技术,但通过加入时间维度、运动和旋转模型以及特征扩散渲染等增强功能,实现了动态场景下更高的效率和更好的效果。本文提出的时空高斯特征扩散方法有效地解决了动态场景视图合成中的渲染质量、实时性和模型存储的平衡问题。
2024-11-04 10:22:35 395
原创 Quickhull 快包算法解决凸包问题
凸包问题是一个与平面上的点集合相关的问题,它的目标是找到一个凸多边形,这个多边形包含了给定的 n 个点,使得这个多边形是包含这些点的最小凸集合。凸集合:对于平面上的一个点集合,如果集合中的任意两点之间的线段都在这个集合内部,那么这个集合被称为凸集合。首先,我们构建一个矩阵,其中第一行是直线的方程的系数,第二行是点的坐标,如下所示:| a b c |在我们的示例中,上包的顶点是 (3, 1),下包的顶点是 (2, 4)。在上集合中,点 (3, 1) 是距离直线最远的点,因此它是上包的一个顶点。
2023-12-18 02:02:03 652 1
原创 脑PET图像分析和疾病预测挑战赛 PyTorch Baseline
2. 定义模型时,我使用了PyTorch自带的ResNet18网络作为基准模型。当然,您也可以考虑使用更大的网络如ResNet50或ResNet101。我们在基准模型的基础上,添加了一个额外的卷积层,以便进一步提取图像特征。此外,我还引入了一个包含512*2个神经元的全连接层,这个全连接层的目的是将输出转换成一个二分类问题的预测结果。1. 读取数据并进行数据增强。
2023-08-21 22:41:04 112
原创 脑PET图像分类示例笔记
通过完成这个示例,我对医学影像处理和机器学习分类有了更深刻的理解。特别是在特征提取和模型选择方面,我学到了如何从图像中提取有意义的信息,并将其应用于模型中。此外,探索不同的特征、模型和参数设置,以及应用交叉验证和集成技术等,都可以进一步提高分类准确率。在进行医学图像分类时,数据预处理是关键的一步。这个过程涉及数据加载、路径管理和一些基本信息的了解。特征提取是将图像转化为模型可用的数值特征的过程。在这个示例中,将提取基本的统计特征。使用已准备好的特征和标签,可以进行模型训练和预测。
2023-08-18 19:20:13 204 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人