一、经典进制转换题
博客打卡第一天。。
今天巨星给大家讲一道经典进制转换题,这是阿里的一道笔试题,想进阿里的同学可以看一看喔。
例题:在n进制下,有567 * 456=150216成立,求n()
A.9 B.10 C.12 D.18
解:一般情况下,遇到这种类型的题时,我们可以利用左边式子的个位数字相乘对所求进制取余跟等式右边的个数位相等来求进制;即6 * 7=42%n=6;将选项代入,发现只有B选项排除,也就是说这样还不足以求得最终结果。
我们试着推导一下:
567 * 456 ->(5n ^ 2+6n+7) * (4n ^ 2+5n+6)->
20n ^ 4+25n ^ 3+30n ^ 2+24n ^ 3+30n ^ 2+36n+28n ^ 2+35n+42->
20n ^ 4+49n ^ 3+88n ^ 2+71n+42;
150216->n ^ 5+5 * n ^ 4+0+2 * n ^ 2+n ^ 1+6->n ^ 5+5n ^4+2n ^ 2+n+6;
即567 * 456=150216->20n ^ 4+49n ^ 3+88n ^ 2+71n+42=n ^ 5+5n ^4+2n ^ 2+n+6;(1)
两边同时对n取余得:42%n=6%n->6;也就是42%n=6;(2)
由(2)式得不出结果,再对(1)式两边同时对n ^ 2取余即:
(71n+42)%n ^ 2=(n+6)%n ^ 2;(3) 再将选项代入求n;
但对(3)式求解n仍是不小的运算量,有没有更为简单的呢?
对(1)式先同时除以n再同时对n取余即:
(71+42/n)%n=(1+6/n)%n=1%n=1->(71+42/n)%n=1;(4)
再对(4)式求解得n;无疑(4)式更为简单;
综上所述我们碰到类似的进制转换题时:
(1)、个位相等即等式左边个位相乘对所求进制n取余和右边的个位数相等;
(2)、等式左边的一次项系数和常数项对进制n整除的和对n取余跟等式右边的十位数字相等;
由(1)和(2)可解进制n的值;
例:n进制下,15 * 4=112;求n();
A.6 B.7 C.8 D.9;
直接求得:4 * 5=20%n=2排除B和C,再由(4+20/n)%n=1即n=6;
巨星第一次写博客,菜鸟一个,还请多多支持…