LeetCode刷题日记(1155. 掷骰子等于目标和的方法数)

        动态规划是一种问题求解思想,通过将大问题分解为小问题并存储小问题的解以避免重复计算,从而提高效率。它通常用于解决需要递归求解的问题,如计算斐波那契数列、寻找最短路径、背包问题等。动态规划的好处在于它能够显著减少计算时间,通过利用已解决的子问题来快速解决更大的问题,因此在处理复杂的组合优化和最优化问题时特别有用。

        动态转移方程的构建是动态规划问题中的关键步骤,它描述了问题的子问题之间的关系,以便从小的子问题逐步构建出更大的问题的解。
        

        第i个骰子有k个面,从1到k,我们可以选择任意一个面的点数。因此,dp[i][j]可以通过前一个状态dp[i-1][j-x](其中x是1到k的任意值)来计算。这是因为前i个骰子和为j的方法可以由前i-1个骰子和为j-x的方法累加得到,其中x是当前骰子的点数。

        因此,动态转移方程可以表示为:

        dp[i][j] = dp[i-1][j-1] + dp[i-1][j-2] + ... + dp[i-1][j-k]

其中,i表示当前骰子的序号,j表示当前和的值,k表示骰子的面数。

"""
这里有 n 个一样的骰子,每个骰子上都有 k 个面,分别标号为 1 到 k 。
给定三个整数 n ,  k 和 target ,返回可能的方式(从总共 kn 种方式中)滚动骰子的数量,
使正面朝上的数字之和等于 target 。
答案可能很大,你需要对 10^9 + 7 取模 。
"""

class Solution:
    def numRollsToTarget(self, n: int, k: int, target: int) -> int:
        mod = 10 ** 9 + 7
        # n个k面骰子,和最小为n,最大为n*k
        # dp[i][j] 表示前i个骰子和为j的方法数
        dp = [[0] * (target + 1) for _ in range(n + 1)]
        dp[0][0] = 1
        # 状态转移方程:
        # 前i个骰子和为j的方法数 = 前i-1个骰子和为j-1的方法数 + 前i-1个骰子和为j-2的方法数 + ... + 前i-1个骰子和为j-k的方法数
        # dp[i][j] = dp[i-1][j-1] + dp[i-1][j-2] + ... + dp[i-1][j-k] k=1,2,3,...,k 且 j-k>=0
        for i in range(1, n + 1):
            for j in range(1, target + 1):
                for x in range(1, k + 1):
                    if j >= x:
                        dp[i][j] += dp[i - 1][j - x]
                        dp[i][j] %= mod
        # print(dp)
        return dp[n][target]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值