Hierarchical Reinforcement Learning for Course Recommendation in MOOCs论文阅读

论文1简介

标题:Hierarchical Reinforcement Learning for Course Recommendation in MOOCs

作者:Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, Jimeng Sun

单位: 中国人民大学教育部数据工程与知识工程重点实验室、 中国人民大学信息学院

佐治亚理工学院计算科学与工程学院

发表会议:AAAI

发表时间:2019年

论文研究主题归类:强化学习在推荐系统中应用

1.论文解决什么问题

在以往的基于注意力机制的推荐系统中,当用户对许多不同的课程都有兴趣时,对目标推荐课程有贡献的课程的影响效果被不同兴趣的其他的历史课程节点影响所干扰,注意力机制表现不佳,因而导致推荐系统误判。作者使用强化学习方法对推荐课程系统中的原始数据进行噪声处理,减小噪声对推荐的影响。

2.是否有公开的数据集及源代码

数据集来自慕课app后台的数据,公开了一部分。

源代码:GitHub-jerryhao66/HRL

3.论文的主要观点

将用户资料的修改过程形式化为一个由智能体进行的分层顺序决策过程。遵循一个修改策略,执行一个高级任务和一个低级任务来修改资料。在修改了用户的整个资料之后,代理从环境中获得一个延迟的奖励,根据这个奖励更新其策略。可以将环境视为数据集和前一节介绍的预训练的基本推荐模型。策略更新后,根据代理修改的资料重新训练基本推荐模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值