- 博客(4)
- 资源 (1)
- 收藏
- 关注
原创 Spatio-Temporal Backpropagation for Training High-performance Spiking Neural Networks笔记
《Spatio-Temporal Backpropagation for Training High-performance Spiking Neural Networks》笔记 ABSTRACT STBP:Spatio-Temporal Backpropagation 1.探索SNN的一个重要原因:spikes的相关编码可以包含很多的时空信息。 2.目前很多(这篇文章发之前)研究都只关注于神经网络的空间域信息,造成了相关研究的瓶颈。也有部分只研究独立时域信息。 3.spike activity是无法微分的
2021-08-04 16:52:03
1277
2
转载 7.5 SNN《脉冲神经网络研究进展综述》笔记
7.5 SNN《脉冲神经网络研究进展综述》笔记 一、SNN相关机制和结构 SNN的优势:丰富的时空动力学特征、多样的编码机制、契合硬件的事件驱动性等。 1.突触可塑性的生物学基础 赫布规则及其延伸 原始:当A细胞重复或持续地参与激活B细胞时,两个细胞间会发生某种生长过程或代谢变化,使得A细胞激活B细胞的效率得到提高。关于海马体中长时程增强作用(LTP)和长时程抑制作用(LTD)两种可塑性实验发现为赫布假说提供了支撑。 延伸:突触前-突触后的神经元发放顺序会引起LTP,突触后-突触前的神经元发放顺序会引起LT
2021-07-06 21:46:42
4005
原创 nohup后台运行
nohup后台运行 参考链接:http://www.voidcn.com/article/p-hnkslsrk-brq.html 相关命令 1.程序挂在后台运行的命令:nohup xxx &(xxx是程序的名字,要带文件类型名) 2.动态显示程序执行的结果:tail -f nohup.out(实时查看) 3.查看运行结果以1000行为单位:tail -1000 nohup.out(以1000行基准大小展示) 4.输出nohup.out文件的最后100行:tail -n 100 nohup.out 5
2021-07-07 09:53:46
420
原创 conda环境有关的操作命令简记
conda环境有关的操作命令简记 一、创建、进入、删除、查看conda环境的命令 1.进入环境:source activate->conda activate xxx/activate xxx(xxx是环境名字) 2.创建环境:conda create -n xxx python=xxx 3.删除环境:conda remove -n xxx --all 4.查看虚拟环境信息:conda info -e/conda info --envs/conda env list 二、conda环境移植 参考链接:
2021-07-07 09:32:51
598
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅