动态规划--矩阵链相乘问题

明确原始问题A[1:n]:计算矩阵链

所需的最小乘法次数。

(1)是否满足最优子结构,问题的解是否包含子问题的优化解?

若计算A[1:n]的优化顺序在k处断开矩阵链,即A[1:n]=A[1:k]×A[k+1:n],则在A[1:n]的优化顺序中,对应于子问题A[1:k]的解必须是A[1:k]的优化解,对应A[k+1:n]的解必须是A[k+1:n]的优化解。

(2)是否满足重叠子问题?

如A[1:2]计算了2次,保存下来能够节省计算时间;

递归计算时,很多子问题会被重复计算很多次。这也是应用动态规划的特征之一

1.分析优化解的结构

2.递归定义最优解的代价

3.自底向上计算最优代价

沿对角线的方式填表!!先计算m[1,1]对角线,再计算m[1,2]对角线,以此类推,最后得到m[1,4],这就是一个自底向上的过程!

4.利用最优值的信息构造最优解

取得的k为A[i:j]最优次序中的断开位置,也即是加括号的位置,记录到s[i][j]表中。

原始问题为A[1:n],通过回溯追踪获得A[1:n]最优值时的k值,即可获得所有加括号的位置。

伪代码:

时间复杂度是O(n^3)

例题:

对维数为序列<5, 10, 3, 12, 5, 50, 6>的各矩阵,找出 矩阵链乘积的一个最优加全部括号

关键在于计算出两个表格:m[i,j]和 s[i,j] (本题都是6行6列)

i = j 时,m[i,j] = 0,所以m[1,1] = 0, m[2,2] = 0,m[3,3] = 0,m[4,4] = 0, m[5,5] = 0,                        m[6,6] = 0;


m[1,2] = min{ k=1, m[1,1] + m[2,2] + p0p1p2 = 0+0+5*10*3 } = 150;

m[2,3] = min{ k=2, m[2,2] + m[3,3] + p1p2p3 = 0+0+10*3*12 } = 360;

m[3,4] = min{ k=3, m[3,3] + m[4,4] + p2p3p4 = 0+0+3*12*5 } = 180;

m[4,5] = min{ k=4, m[4,4] + m[5,5] + p3p4p5 = 0+0+12*5*50 } = 3000;

m[5,6] = min{ k=5, m[5,5] + m[6,6] + p4p5p6 = 0+0+5*50*6 } = 1500;

m[1,3] = min{ k=1, m[1,1] + m[2,3] + p0p1p3 = 0+360+600= 960 ;

                      k=2, m[1,2] + m[3,3] + p0p2p3 = 150+0+5*3*12 = 330} = 330;

m[2,4] = min{ k=2, m[2,2] + m[3,4] + p1p2p4 = 0+180+10*3*5 = 330;

                      k=3, m[2,3] + m[4,4] + p1p3p4 = 0+360+0+10*12*5=960} = 330;

m[3,5] = min{ k=3, m[3,3] + m[4,5] + p2p3p5 = 0+3000+3*12*50 = 4800;

                      k=4, m[3,4] + m[5,5] + p2p4p5 = 180+0+3*5*50 = 930} = 930;

m[4,6] = min{ k=4, m[4,4] + m[5,6] + p3p4p6 = 0+1500+12*5*6 = 1860;

                      k=5, m[4,5] + m[6,6] + p3p5p6 = 3000+0+12*50*6 = 6600} = 1860;

后面以此类推:......

m[i, j]:记录子问题最优解的解值,保存下来避免重复计算。即矩阵连乘积A[i, j]的最小值。

i / j

1

2

3

4

5

6

1

0

150

330

405

1655

2010

2

0

360

330

1080

1950

3

0

180

930

1770

4

0

3000

1860

5

0

1500

6

0

s[i, j]:记录A[i, j]最优次序的断开位置,就是 k 的最优值。

i / j

1

2

3

4

5

6

1

0

1

2

2

4

2

2

0

2

2

2

2

3

0

3

4

4

4

0

4

4

5

0

5

6

0

所矩阵A1A2A3A4A5A6, 即矩阵连乘积A[1,6]的最少次数 = 2010;

s[1,6] = 2,A1A2A3A4A5A6 = (A1A2)A3A4A5A6;

s[3,6] = 4,A3A4A5A6 = (A3A4)(A5A6);

综上,A1A2A3A4A5A6 = (A1A2)( (A3A4)(A5A6) );

  • 4
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
矩阵问题是一个经典的动态规划问题,其目标是找到一种最优的方式来计算给定的一组矩阵的连乘积。这个问题可以通过动态规划算法来解决。 动态规划算法的基本思想是将问题分解成更小的子问题,并使用已知的信息来计算更大的问题。在矩阵问题中,我们可以将问题分解成计算两个矩阵的乘积的子问题,并使用已知的信息来计算更大的问题。 具体来说,我们可以定义一个二维数组m,其中m[i][j]表示从第i个矩阵到第j个矩阵的最小计算代价。我们还可以定义一个二维数组s,其中s[i][j]表示从第i个矩阵到第j个矩阵的最优计算次序。 接下来,我们可以使用以下递归公式来计算m和s: m[i][j] = 0 (i = j) m[i][j] = min{m[i][k] + m[k+1][j] + ri*ck*cm} (i <= k < j) 其中,ri和ci分别表示第i个矩阵的行数和列数,cm表示两个矩阵相乘的计算代价。 使用上述递归公式,我们可以计算出所有的m[i][j]和s[i][j]。最终,我们可以通过s数组来构造出最优的计算次序,并使用m数组来计算最小的计算代价。 下面是一个Python实现的例子: ```python def matrix_chain_order(p): n = len(p) - 1 m = [[0] * n for i in range(n)] s = [[0] * n for i in range(n)] for l in range(2, n+1): for i in range(n-l+1): j = i + l - 1 m[i][j] = float('inf') for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i]*p[k+1]*p[j+1] if q < m[i][j]: m[i][j] = q s[i][j] = k return m, s def print_optimal_parens(s, i, j): if i == j: print("A{}".format(i+1), end='') else: print("(", end='') print_optimal_parens(s, i, s[i][j]) print_optimal_parens(s, s[i][j]+1, j) print(")", end='') p = [30, 35, 15, 5, 10, 20, 25] m, s = matrix_chain_order(p) print_optimal_parens(s, 0, len(p)-2) print("\nMinimum cost:", m[0][len(p)-2]) ``` 输出结果为: ``` ((A1(A2A3))((A4A5)A6)) Minimum cost: 15125 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值