Python迭代器,生成器,装饰器小笔记

关于python迭代器,生成器,装饰器三者之间的区别

在此,我们先复习稍微回顾有关迭代器与生成器的一些知识。

迭代器

定义:可以被next函数调用并返回下一个值的对象成为迭代器对象。
下面我们来看一段代码。

class GraphManager:
    """
    图形管理器
    """
    def __init__(self):
        self.__list_graph = []
    def add_graph(self, graph_target=''):
        self.__list_graph.append(graph_target)
    def __iter__(self):
        return GraphIterator(self.__list_graph) #返回迭代器对象
class GraphIterator:
    """
    图形迭代器
    """
    def __init__(self, data):
        self.__target = data
        self.__index = -1

    def __next__(self):
        self.__index += 1
        # 当前需要获取的索引 比最大索引还大
        if self.__index > len(self.__target) - 1:
            raise StopIteration
        return self.__target[self.__index]

manager = GraphManager()
manager.add_graph("圆形")
manager.add_graph("三角形")
manager.add_graph("矩形")
#for循环原理,
#与for item in manager: 
#      print(item) 实现结果相同
while True:
    try:
        #  获取下一个元素
        item = iterator.__next__()  # Stop Iteration
        print(item)
        #  遇到"停止迭代"异常,则停止循环.
    except StopIteration:
        break

我们创建一个图形管理器,我们并不知到我们管理图形数据的容器到底是不是可迭代对象。因此,我们直接对其进行for循环遍历是十分容易出错的。所以,我们通过给管理器定义一个iter函数,让他服从可迭代协议,让其可以用for循环遍历。之后,值得注意的一个地方就是,iter函数的返回值是迭代器对象。让其在进行遍历时可以调用next函数,进而获取管理器中的下一个元素。
综上所述,我们最需要注意的地方就在于iter函数的创建及其返回值(迭代器对象),还有迭代器对象的创建,和next函数的调用。

生成器

生成器同样是通过访问迭代器协议对可迭代对象进行遍历,它具有迭代器的功能,所以我们有时也常常会说生成器就是迭代器。但生成器与迭代器之间的区别到底在于哪些地方呢。这两者在语法上,还有行为上都有很大的不同。同样,我们通过下列的代码进行分析。

class GraphManager:
    def __init__(self):
        self.__list_graph = []
    def add_graph(self, graph_target=''):
        self.__list_graph.append(graph_target)
    def __iter__(self):
        self.__index = 0
        while self.__index < len(self.__list_graph) :
            yield self.__list_graph[self.__index]
            self.__index += 1
manager = GraphManager()
manager.add_graph("圆形")
manager.add_graph("三角形")
manager.add_graph("矩形")

for item in manager:
    print(item)

执行上述代码,我们也实现了遍历manager的功能。仅仅从结果来看,我们并不能分析他们之间本质的区别。我们可以通过在for语句处打断点进行调试。
当我们执行for循环时,逐步执行,不难看出,遍历时,进入循环,获取元素,执行print(item)时候,暂时跳出了循环。当需要获取下一个元素时,又跳转进入循环之中,继续上次跳出的循环继续获取后面的元素。
再对比迭代器,在遍历时,观察执行情况,依次获取并输出才跳出循环。
两者对比,不难发现,当我们用生成器函数遍历可迭代对象时,在执行next语句时,会重新进入循环。简单来说,**yield语句本质就是,做一次,执行一次,返回一次。**但是因为简简单单的一句yield语句,我们并不能观察程序内部执行的情况,只有通过迭代器与其对比调试,我们才能窥探他们的本质。一句简单的yield,这中间省略了许多的访问与调用,当我们清楚了解其本质之后,才理解这之中的沉重。
以上就是迭代器与生成器之间的区别。

装饰器

在我看来,迭代器,生成器,装饰器,这三者都有器字,但装饰器与其他两者是没有任何联系的。
装饰器
定义:在不改变原函数的调用以及内部代码情况下,为其添加新功能的函数
语法
def 函数装饰器名称(func):
def 内嵌函数(*args, **kwargs):
需要添加的新功能
return func(*args, **kwargs)
return wrapper

@ 函数装饰器名称
def 原函数名称(参数):
函数体

原函数(参数)
本质:使用“@函数装饰器名称”修饰原函数,等同于创建与原函数名称相同的变量,关联内嵌函数;故调用原函数时执行内嵌函数。
原函数名称 = 函数装饰器名称(原函数名称)
下面我们同样通过代码去了解装饰器的用处。
例子:不影响旧功能(进入后台没删除订单)基础上,增加新功能(验证权限)

# 新功能
def verif_permissions():
    print("验证权限")
# 旧功能
def enter_background():
    print("进入后台")
def delete_order():
    print("删除订单")
def verif_permissions(func):
    def wrapper(*args, **kwargs):
        print("验证权限")
        return func(*args, **kwargs)
    return wrapper
@verif_permissions
def enter_background():
    print("进入后台")
    
enter_background()

运行上述代码,不难看出我们在执行原函数的时候,装饰器对原函数进行了拦截,并先行执行了装饰器的操作,再执行原函数。这样我们就实现了在不修改原有代码的情况下,实现新的功能。

以上就是关于迭代器,生成器,装饰器三者的一些知识点如果这篇笔记中有错误的地方,请读者务必指出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值