support information

内容提要
本应用是一款智能点读系列APP,将大大书包装进手机中,一学就会、一点就通、快乐学习,爸妈再也不用担心孩子辅导问题啦,让孩子学习更加容易,让家长更省心更放心。
快速帮助小学儿童学习的软件,就像口袋学习机一样,让学习更加方便快捷,主要功能有快速点读,高清动画、趣味答题、语音朗读、单词复习模块、测试模块,自定义课程表,图画功能等。
让孩子在快乐中学习成长是我们的宗旨!
让家长放心再也不用担心还在的学习问题了!

-------------------------------------

特色功能:

  • 双语朗读准确清晰、高清图片孩子不伤眼、整理详细的单元知识问题。

  • 单句、复读、点读模式,让孩子听得更准学得更好。

  • 书写绘画模式很强大,边听边学变写,让孩子可以实时学习和练习。

  • 同步课本教材,让孩子学习最新版本的教科知识。

  • 课表功能,添加一周的学习课程,帮助孩子规划每天的学习内容。

  • 丰富有趣的产品让孩子在游戏中独立思考,自由学习,享受探索世界的乐趣。

    专注于小学教育的研发,根据不同年龄段孩子的成长特点,精心打造专属的APP,交互方式独特,以达到教育的目的和效果启蒙,为孩子的童年增添了一抹亮丽的门,有利于孩子的健康身体和智力发育,智力发展和完善,在娱乐轻松的学习和成长,让孩子在家里就可以快速学习。

-------------------------------------

【联系我们】
如果有任何问题,请联系我们,欢迎大家加QQ群交流。
用户交流QQ群:561038108
反馈邮箱:2091575148@qq.com
欢迎联系我们,提出宝贵建议,共同为孩子设计更优秀的产品!

-------------------------------------

### SUPPORT Dataset in Machine Learning Context In the context of machine learning and data science, the term "SUPPORT" often refers to a specific dataset used primarily for research purposes. This dataset originates from studies aimed at predicting survival probabilities for patients who are critically ill[^1]. The SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment) dataset includes various features related to patient demographics, clinical measurements, laboratory results, and outcomes. #### Key Characteristics of the SUPPORT Dataset - **Data Source**: Collected from multiple hospitals across different regions. - **Patient Population**: Focuses on adult patients admitted to intensive care units (ICUs). - **Feature Set**: Includes demographic information like age, gender; physiological parameters such as heart rate, blood pressure; lab test values including creatinine levels, white cell counts; comorbidities presence or absence. - **Outcome Variable(s)**: Typically involves binary classification targets indicating whether a patient survived beyond certain time points post-admission. This dataset has been widely utilized within healthcare analytics applications where predictive modeling plays an essential role in understanding mortality risks associated with critical illnesses. Researchers leverage these insights into building more accurate prognostic models which could potentially improve decision-making processes around end-of-life care planning. For practical implementation using Python libraries: ```python import pandas as pd from sklearn.model_selection import train_test_split # Load the dataset assuming it's available locally or through some API endpoint df = pd.read_csv('path_to_support_dataset.csv') # Preprocessing steps might include handling missing values, encoding categorical variables etc. X = df.drop(columns=['survival_status']) # Features excluding target variable y = df['survival_status'] # Target variable # Splitting into training/testing sets while preserving class distribution ratio X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y) print(f'Training set shape: {X_train.shape}') print(f'Testing set shape: {X_test.shape}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值