21.4轮廓的其他函数
(1).凸缺陷(Convexity Defects)
前面我们已经学习了轮廓的凸包,对象上的任何凹陷都被成为凸缺陷。OpenCV 中有一个函数 cv2.convexityDefect() 可以帮助我们找到凸缺陷。函数调用如下:
hull = cv2.convexHull(cnt,returnPoints = False)
defects = cv2.convexityDefects(cnt,hull)
注意:如果要查找凸缺陷,在使用函数 cv2.convexHull 找凸包时,参数returnPoints 一定要是 False。
它会返回一个数组,其中每一行包含的值是 [起点,终点,最远的点,到最 远点的近似距离]。我们可以在一张图上显示它。我们将起点和终点用一条绿线 连接,在最远点画一个圆圈,要记住的是返回结果的前三个值是轮廓点的索引。 所以我们还要到轮廓点中去找它们。
import cv2
import numpy as np
# 创建白色背景图像(800x800像素,更大更清晰)
img = np.ones((800, 800, 3), dtype=np.uint8) * 255
# 定义五边形轮廓坐标(包含一个明显凹陷)
# 点顺序:左上 -> 右上 -> 凹陷点 -> 右下 -> 左下
contour_points = np.array([
[[200, 150]], # 左上
[[600, 150]], # 右上
[[500, 400]], # 凹陷点(中间靠左)
[[600, 650]], # 右下
[[200, 650]] # 左下
], dtype=np.int32)
# 1. 绘制原始五边形轮廓(绿色粗线)
cv2.drawContours(img, [contour_points], -1, (0, 180, 0), 10)
# 2. 计算并绘制凸包(红色粗线)
convex_hull = cv2.convexHull(contour_points)
cv2.drawContours(img, [convex_hull], -1, (0, 0, 255), 5)
# 3. 计算凸性缺陷(凹陷区域)
hull_indices = cv2.convexHull(contour_points, returnPoints=False)
defects = cv2.convexityDefects(contour_points, hull_indices)
# 4. 绘制缺陷特征
if defects is not None:
for i in range(defects.shape[0]):
# 提取缺陷数据:起点、终点、最远点、距离
start_idx, end_idx, far_idx, distance = defects[i, 0]
# 获取坐标点
start_point = tuple(contour_points[start_idx][0])
end_point = tuple(contour_points[end_idx][0])
far_point = tuple(contour_points[far_idx][0])
# 绘制缺陷连接线(蓝色实线)
cv2.line(img, start_point, end_point, (255, 0, 0), 3)
# 绘制凹陷最深点(黄色大圆点+黑色中心)
cv2.circle(img, far_point, 12, (0, 220, 220), -1)
cv2.circle(img, far_point, 3, (0, 0, 0), -1)
# 5. 添加中文标注(需要支持中文的字体)
# 模拟中文标注(实际运行时需要替换为中文字体)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, 'Original (Green)', (50, 70), font, 1.2, (0, 150, 0), 2)
cv2.putText(img, 'Convex Hull (Red)', (50, 110), font, 1.2, (0, 0, 200), 2)
cv2.putText(img, 'Defect (Blue/Yellow)', (450, 70), font, 1.2, (200, 0, 0), 2)
# 显示结果
cv2.imshow('凸包缺陷检测演示', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 保存图像
cv2.imwrite('凸包缺陷检测结果.jpg', img)
结果:
(2).多边形点测试(pointPolygonTest)
求解图像中的一个点到一个对象轮廓的最短距离。如果点在轮廓的外部, 返回值为负;如果在轮廓上,返回值为 0; 如果在轮廓内部,返回值为正。
下面我们以点(50,50)为例:
dist = cv2.pointPolygonTest(cnt,(50,50),True)
此函数的第三个参数是 measureDist。如果设置为 True,就会计算最短距离。如果是 False,只会判断这个点与轮廓之间的位置关系(返回值为+1,-1,0)。
注意:如果不需要知道具体距离,建议将第三个参数设为 False,这样速 度会提高 2 到 3 倍.
(3).形状匹配(Match Shapes)
函数 cv2.matchShape() 可以帮我们比较两个形状或轮廓的相似度。如果返回值越小,匹配越好。它是根据 Hu 矩值来计算的。文档中对不同的方法都有解释。
我们试着将下面的图形进行比较:
import cv2
img1 = cv2.imread('star.jpg',0)
img2 = cv2.imread('star2.jpg',0)
ret, thresh = cv2.threshold(img1, 127, 255,0)
ret, thresh2 = cv2.threshold(img2, 127, 255,0)
contours,hierarchy = cv2.findContours(thresh,2,1)
cnt1 = contours[0]
contours,hierarchy = cv2.findContours(thresh2,2,1)
cnt2 = contours[0]
ret = cv2.matchShapes(cnt1,cnt2,1,0.0)
print (ret)
得到的结果是:
• A 与自己匹配 0.0
• A 与 B 匹配 0.001946
• A 与 C 匹配 0.326911
看见了吗,及时发生了旋转对匹配的结果影响也不是非常大。
注意:Hu 矩是归一化中心矩的线性组合,之所以这样做是为了能够获取代表图像的某个特征的矩函数,这些矩函数对某些变化如缩放,旋转,镜像映射(除了 h1)具有不变形。此段摘自《学习 OpenCV》中文版。
21.5轮廓的层次结构
在前面的内容中我们使用函数 cv2.findContours 来查找轮廓,我们需 要传入一个参数:轮廓提取模式(Contour_Retrieval_Mode)。我们总是把它设置为 cv2.RETR_LIST 或者 cv2.RETR_TREE,效果还可以。同时,我们得到的结果包含 3 个数组:第一个是图像,第二个是轮廓,第三 个是层次结构。
(1).层次结构的概念
通常我们使用函数 cv2.findContours 在图片中查找一个对象。有时对 象可能位于不同的位置。还有些情况,一个形状在另外一个形状的内部。这种情况下我们称外部的形状为父,内部的形状为子。按照这种方式分类,一幅图 像中的所有轮廓之间就建立父子关系。这样我们就可以确定一个轮廓与其他轮 廓是怎样连接的,比如它是不是某个轮廓的子轮廓,或者是父轮廓。这种关系就成为组织结构。
下图就是一个简单的例子:
在这幅图像中,我给这几个形状编号为 0-5。2 和 2a 分别代表最外边矩形的外轮廓和内轮廓。在这里边轮廓 0,1,2 在外部或最外边。我们可以称他们为(组织结构)0 级,简单来说就是他们属于同一级。我们把2a当成轮廓 2 的子轮廓,它就成为(组织结构)第1 级。同样轮廓 3 是轮廓 2 的子轮廓,成为(组织结构)第 3 级。最后轮廓4,5 是轮廓 3a 的子轮廓,成为(组织结构)4 级(最后一级)。按照这种方式 给这些形状编号,我们可以说轮廓 4 是轮廓 3a 的子轮廓(当然轮廓 5也是)。
为什么2a和3不是同一级?
结构位置不同:
2a是轮廓2的"内轮廓"(子轮廓)
3是轮廓2的另一个独立子轮廓
它们虽然都是轮廓2的子级,但属于不同的分支
(2).OpenCV中的层次结构
不管层次结构是什么样的,每一个轮廓都包含自己的信息:谁是父,谁 是子等。OpenCV 使用一个含有四个元素的数组表示。[Next,Previous, First_Child,Parent]。
Next 表示同一级组织结构中的下一个轮廓。
以上图中的轮廓 0 为例,轮廓 1 就是他的 Next。同样,轮廓 1 的 Next是 2,Next=2。
那轮廓 2 呢?在同一级没有 Next。这时 Next=-1。而轮廓 4 的 Next为 5,所以它的 Next=5。
Previous 表示同一级结构中的前一个轮廓。
与前面一样,轮廓 1 的 Previous 为轮廓 0,轮廓 2 的 Previous 为轮 廓 1。轮廓 0 没有 Previous,所以 Previous=-1。
First_Child 表示它的第一个子轮廓。
没有必要再解释了,轮廓 2 的子轮廓为 2a。所以它的 First_Child 为 2a。那轮廓 3a 呢?它有两个子轮廓。但是我们只要第一个子轮廓,所以是轮 廓 4(按照从上往下,从左往右的顺序排序)。
Parent 表示它的父轮廓。
与 First_Child 刚好相反。轮廓 4 和 5 的父轮廓是 3a。而轮廓 3a的父轮廓是3。
注意:如果没有父或子,就为 -1。
现在我么了解了 OpenCV 中的轮廓组织结构。我们还是根据上边的图片 再学习一下 OpenCV 中的轮廓检索模式。
cv2.RETR_LIST,cv2.RETR_TREE,cv2.RETR_CCOMP,cv2.RETR_EXTERNAL
到底代表什么意思?
(3).轮廓检索模式
RETR_LIST 从解释的角度来看,这中应是最简单的。它只是提取所有的轮 廓,而不去创建任何父子关系。换句话说就是“人人平等”,它们属于同一级组织轮廓。
所以在这种情况下,组织结构数组的第三和第四个数都是 -1。但是,很明显,Next 和 Previous 要有对应的值,你可以自己试着看看。下面就是得到的结果,每一行是对应轮廓的组织结构细节。例如,第一 行对应的是轮廓 0。下一个轮廓为 1,所以 Next=1。前面没有其他轮廓,所 以 Previous=0。接下来的两个参数就是-1,与刚才我们说的一样。
如果你不关心轮廓之间的关系,这是一个非常好的选择。
RETR_EXTERNAL 如果你选择这种模式的话,只会返回最外边的的轮廓, 所有的子轮廓都会被忽略掉。
所以在上图中使用这种模式的话只会返回最外边的轮廓(第 0 级):轮廓0,1,2。下面是我选择这种模式得到的结果:
当你只想得到最外边的轮廓时,你可以选择这种模式。这在有些情况下很 有用。
RETR_CCOMP 在这种模式下会返回所有的轮廓并将轮廓分为两级组织结 构。例如,一个对象的外轮廓为第 1 级组织结构。而对象内部中空洞的轮廓为第 2 级组织结构,空洞中的任何对象的轮廓又是第 1 级组织结构。空洞的组织结构为第 2 级。想象一下一副黑底白字的图像,图像中是数字 0。0 的外边界属于第一级 组织结构,0 的内部属于第 2 级组织结构。
我们可以以下图为例简单介绍一下。我们已经用红色数字为这些轮廓编号, 并用绿色数字代表它们的组织结构。顺序与 OpenCV 检测轮廓的顺序一直。
现在考虑轮廓 0,它的组织结构为第 1 级。其中有两个空洞 1 和 2, 它们属于第 2 级组织结构。所以对于轮廓 0 来说跟他属于同一级组织结构的 下一个(Next)是轮廓 3,并且没有 Previous。它的 Fist_Child 为轮廓 1, 组织结构为 2。由于它是第 1 级,所以没有父轮廓。因此它的组织结构数组为 [3,-1,1,-1]。
现在是轮廓 1,它是第 2 级。处于同一级的下一个轮廓为 2。没有 Previ- ous,也没有 Child,(因为是第 2 级所以有父轮廓)父轮廓是 0。所以数组是 [2,-1,-1,0]。
轮廓 2:它是第 2 级。在同一级的组织结构中没有 Next。Previous 为轮 廓 1。没有子,父轮廓为 0,所以数组是 [-1,1,-1,0]
轮廓 3:它是第 1 级。在同一级的组织结构中 Next 为 5。Previous 为 轮廓 0。子为 4,没有父轮廓,所以数组是 [5,0,4,-1]
轮廓 4:它是第 2 级。在同一级的组织结构中没有 Next。没有 Previous, 没有子,父轮廓为 3,所以数组是 [-1,-1,-1,3]
下面是我得到的答案:
import cv2
import numpy as np
# 创建一个带空洞的测试图像
img = np.zeros((400, 600, 3), dtype=np.uint8)
cv2.rectangle(img, (50, 50), (300, 300), (255, 255, 255), -1) # 外层矩形(级别0)
cv2.rectangle(img, (100, 100), (250, 250), (0, 0, 0), -1) # 内层矩形(级别1)
cv2.circle(img, (400, 200), 80, (255, 255, 255), -1) # 外层圆形(级别0)
cv2.circle(img, (400, 200), 40, (0, 0, 0), -1) # 内层圆形(级别1)
# 转为灰度图并二值化
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 使用RETR_CCOMP检测轮廓
contours, hierarchy = cv2.findContours(
thresh, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE
)
# 打印层级关系
print("层级关系数组:\n", hierarchy)
# 输出格式: [Next, Previous, First_Child, Parent]
# 可视化轮廓层级
for i, cnt in enumerate(contours):
# 根据层级设置颜色和线宽
level = hierarchy[0][i][3] # 父轮廓索引
color = (0, 255, 0) if level == -1 else (0, 0, 255) # 级别0绿色,级别1红色
thickness = 2 if level == -1 else 1
# 绘制轮廓
cv2.drawContours(img, [cnt], -1, color, thickness)
# 标记轮廓编号和级别
M = cv2.moments(cnt)
if M["m00"] > 0:
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
cv2.putText(img, f"{i}(L{0 if level == -1 else 1})",
(cx-20, cy), cv2.FONT_HERSHEY_SIMPLEX,
0.5, (255, 255, 255), 1)
cv2.imshow("RETR_CCOMP Demo", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
RETR_TREE 是最完美的一个。这种模式下会返回所有轮廓,并且创建一个完整的组织结构列表。它甚至会告诉你谁是爷爷,爸 爸,儿子,孙子等。
还是以上图为例,使用这种模式,对 OpenCV 返回的结果重新排序并分 析它,红色数字是边界的序号,绿色是组织结构。
轮廓 0 的组织结构为 0,同一级中 Next 为 7,没有 Previous。子轮廓 是 1,没有父轮廓。所以数组是 [7,-1,1,-1]。
轮廓 1 的组织结构为 1,同一级中没有其他,没有 Previous。子轮廓是 2,父轮廓为 0。所以数组是 [-1,-1,2,0]。
剩下的自己试试计算一下吧。下面是结果: