一个 AI 项目从需求分析到部署的完整流程可以分为以下几个阶段,每个阶段都有其特定的目标和任务。下面以一个简单的图像分类项目为例,来说明这一过程:
1. 需求分析
目标:明确项目的目标、范围和预期成果。
- 背景调研:了解项目背景,确定业务需求。例如,客户需要一个能够自动识别不同种类花卉的系统。
- 需求收集:与利益相关者(如业务部门、技术团队)沟通,收集具体需求。例如,识别准确率要求、支持的花卉种类、响应时间等。
- 需求文档:编写需求文档,明确项目目标、功能需求和技术指标。
2. 数据收集与预处理
目标:获取并准备用于训练和测试的数据。
- 数据收集:从公开数据集或自建数据集中获取花卉图像数据。例如,使用 Kaggle 的花卉数据集。
- 数据清洗:去除无效或错误的数据,确保数据质量。例如,删除模糊不清或标签错误的图像。
- 数据标注:对图像进行标注,生成标签数据。例如,将每张图像标记为对应的花卉种类。
- 数据划分:将数据划分为训练集、验证集和测试集。例如,80% 用于训练,10% 用于验证,10% 用于测试。
3. 模型选择与训练
目标:选择合适的模型并进行训练。