向量数据库是专门用于存储、索引和检索高维向量数据的数据库系统。其核心能力是通过高效的相似性搜索算法(如余弦相似度),快速找到与查询向量最接近的数据项。典型技术实现包括:
- 量化索引(如PQ、SQ)
- 近似最近邻算法(ANN)
- 分层可导航小世界图(HNSW)
- 混合索引结构
在大模型应用中的关键作用:
问题领域 | 具体挑战 | 向量数据库解决方案 |
---|---|---|
知识外延限制 | 大模型训练数据截止性和领域局限性 | 存储私有知识/实时数据的向量化表示,通过检索增强生成(RAG)扩展模型认知边界 |
长上下文处理 | Transformer架构的注意力机制存在长度限制 | 将长文档分块向量化存储,实现精准段落级检索 |
多模态对齐 | 跨模态语义关联难以直接建模 | 建立统一向量空间映射(文本/图像/视频的联合嵌入) |
动态更新需求 | 大模型参数更新成本高昂 | 通过向量存储层实现知识热更新,避免全模型微调 |
推理可解释性 | 黑箱决策过程缺乏透明度 | 检索相似案例提供参考依据,构建可信推理链条 |
计算资源优化 | 全量数据重推理带来高延迟 | 缓存高频查询结果的语义向量,实现亚秒级响应 |
典型应用范式:
- 检索增强生成(RAG):将用户查询向量化→检索相关文档→注入大模型上下文
- 长期记忆模拟:维护用户交互历史的向量存档→实现个性化对话延续
- 异常检测:比对输入向量与正常模式库→提前识别潜在风险请求
性能基准(以768维向量为例):
- 十亿级数据集检索延迟<100ms
- 召回率@10可达95%+
- 单节点吞吐量>5,000 QPS
向量数据库已成为大模型应用的基座组件,据行业统计,采用向量检索可使生成内容的事实准确性提升40-65%,同时降低70%以上的幻觉发生率。