朴素贝叶斯
朴素贝叶斯介绍
常见的概率公式
条件概率: 表示事件A在另外一个事件B已经发生条件下的发生概率,P(A|B)
在女神喜欢的条件下,职业是程序员的概率?
- 女神喜欢条件下,有 2、3、4、7 共 4 个样本
- 4 个样本中,有程序员 3、4 共 2 个样本
- 则 P(程序员|喜欢) = 2/4 = 0.5
联合概率: 表示多个条件同时成立的概率,P(AB) = P(A) P(B|A)
特征条件独立性假设:P(AB) = P(A) P(B)
职业是程序员并且体型匀称的概率?
在女神喜欢的条件下,职业是程序员的概率?
- 女神喜欢条件下,有 2、3、4、7 共 4 个样本
- 4 个样本中,有程序员 3、4 共 2 个样本
- 则 P(程序员|喜欢) = 2/4 = 0.5
- 联合概率: 表示多个条件同时成立的概率,P(AB) = P(A) P(B|A)
特征条件独立性假设:P(AB) = P(A) P(B)
职业是程序员并且体型匀称的概率?
- 数据集中,共有 7 个样本
- 职业是程序员有 1、3、4 共 3 个样本,则其概率为:3/7
- 在职业是程序员,体型是匀称有 3 共 1 个样本,则其概率为:1/3
- 则即是程序员又体型匀称的概率为:3/7 * 1/3 = 1/7
联合概率 + 条件概率:
在女神喜欢的条件下,职业是程序员、体重超重的概率? P(AB|C) = P(A|C) P(B|AC)
- 在女神喜欢的条件下,有 2、3、4、7 共 4 个样本
- 在这 4 个样本中,职业是程序员有 3、4 共 2 个样本,则其概率为:2/4=0.5
- 在在 2 个样本中,体型超重的有 4 共 1 个样本,则其概率为:1/2 = 0.5
- 则 P(程序员, 超重|喜欢) = 0.5 * 0.5 = 0.25
简言之:
条件概率:在去掉部分样本的情况下,计算某些样本的出现的概率,表示为:P(B|A)
联合概率:多个事件同时发生的概率是多少,表示为:P(AB) = P(B)*P(A|B)
贝叶斯公式
- P( C) 表示 C 出现的概率
- P(W|C) 表示 C 条件 W 出现的概率
- P(W) 表示 W 出现的概率
-1. P(C|W) = P(喜欢|程序员,超重)
-2. P(W|C) = P(程序员,超重|喜欢)
-3. P© = P(喜欢)
-4. P(W) = P(程序员,超重)
- 根据训练样本估计先验概率P©:P(喜欢) = 4/7
- 根据条件概率P(W|C)调整先验概率:P(程序员,超重|喜欢) = 1/4
- 此时我们的后验概率P(C|W)为:P(程序员,超重|喜欢) * P(喜欢) = 4/7 * 1/4 = 1/7
- 那么该部分数据占所有既为程序员,又超重的人中的比例是多少呢?
- P(程序员,超重) = P(程序员) * P(超重|程序员) = 3/7 * 2/3 = 2/7
- P(喜欢|程序员, 超重) = 1/7 ➗ 2/7 = 0.5
朴素贝叶斯
我们发现,在前面的贝叶斯概率计算过程中,需要计算 P(程序员,超重|喜欢) 和 P(程序员, 超重) 等联合概率,为了简化联合概率的计算,朴素贝叶斯在贝叶斯基础上增加:特征条件独立假设,即:特征之间是互为独立的。
此时,联合概率的计算即可简化为:
- P(程序员,超重|喜欢) = P(程序员|喜欢) * P(超重|喜欢)
- P(程序员,超重) = P(程序员) * P(超重)
拉普拉斯平滑系数
由于训练样本的不足,导致概率计算时出现 0 的情况。为了解决这个问题,我们引入了拉普拉斯平滑系数。
- α 是拉普拉斯平滑系数,一般指定为 1
- Ni 是 F1 中符合条件 C 的样本数量
- N 是在条件 C 下所有样本