AI:矩阵简介和numpy中基本使用

数学:矩阵

1 矩阵和向量

1.1 矩阵

矩阵,英文matrix,和array的区别矩阵必须是2维的,但是array可以是多维的。

如图:这个是 3×2 矩阵,即 3 行 2 列,如 m 为行,n 为列,那么 m×n 即 3×2
[ 1 2 3 4 5 6 ] \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] 135246
矩阵的维数即行数×列数

矩阵元素(矩阵项):
A = [ 1 2 3 4 5 6 ] A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] A= 135246
Aij 指第 i 行,第 j 列的元素。

1.2 向量

向量是一种特殊的矩阵,讲义中的向量一般都是列向量,下面展示的就是三维列
向量(3×1)。)
A = [ 1 2 3 ] A = \left[ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right] A= 123

2 加法和标量乘法

矩阵的加法:行列数相等的可以加。

例:
[ 1 2 3 4 5 6 ] + [ 1 2 3 4 5 6 ] = [ 2 4 6 8 10 12 ] \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] + \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] = \left[ \begin{matrix} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{matrix} \right] 135246 + 135246

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员无羡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值