数学:矩阵
1 矩阵和向量
1.1 矩阵
矩阵,英文matrix,和array的区别矩阵必须是2维的,但是array可以是多维的。
如图:这个是 3×2 矩阵,即 3 行 2 列,如 m 为行,n 为列,那么 m×n 即 3×2
[ 1 2 3 4 5 6 ] \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right]
135246
矩阵的维数即行数×列数
矩阵元素(矩阵项):
A = [ 1 2 3 4 5 6 ] A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] A=
135246
Aij 指第 i 行,第 j 列的元素。
1.2 向量
向量是一种特殊的矩阵,讲义中的向量一般都是列向量,下面展示的就是三维列
向量(3×1)。)
A = [ 1 2 3 ] A = \left[ \begin{matrix} 1 \\ 2 \\ 3 \end{matrix} \right] A=
123
2 加法和标量乘法
矩阵的加法:行列数相等的可以加。
例:
[ 1 2 3 4 5 6 ] + [ 1 2 3 4 5 6 ] = [ 2 4 6 8 10 12 ] \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] + \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix} \right] = \left[ \begin{matrix} 2 & 4 \\ 6 & 8 \\ 10 & 12 \end{matrix} \right]
135246
+
135246