ACM-ICPC 2017 Asia Urumqi Coins

ACM-ICPC 2017 Asia Urumqi Coins

题意: 有n个硬币全部正面朝下,你有m次操作,每次操作选择k个硬币抛起来,问在最优策略下,你得到数量最多的朝上的硬币数量的期望。

思路: 我一开始想到的是dfs,但是感觉不行,复杂度太高了,后来又想到用概率dp做,我们每一次抛起来,规定现在有几个正面,然后去推这一次抛完后有几个正面,,最后得到概率,乘上期望就好了。但是dp的时候要注意类讨论,有一种情况是我们剩下的反面硬币不足k个,就需要用到已经是正面的硬币,这时候dp就要减去被卷进来的本来已经是正面的硬币。(记得初始化dp[0][0]==1,因为在没翻过的时候所有的硬币都是反面朝上,所以正面朝上0个的概率为1)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; 
int n,m,k;
double gai[105];
double aa;
double dp[105][105];
double c[105][105];
double p[105];
int main()
{
	ll t;
	c[0][0]=1;
	p[0]=1;
	for(int i=1;i<=100;i++){
		c[i][0]=1;
		for(int j=1;j<=i;j++)
		{
			c[i][j]=c[i-1][j-1]+c[i-1][j];
		}
		p[i]=p[i-1]/2.0;
	}
	scanf("%lld",&t);
	while(t--)
	{	
		memset(dp,0,sizeof dp);
		scanf("%d%d%d",&n,&m,&k);
		for(int i=0;i<=k;i++)
		{
			gai[i]=c[k][i]*p[k];
		}
		dp[0][0]=1;
		for(int i=0;i<m;i++){
			for(int j=n;j>=0;j--){
				if(dp[i][j]==0)continue;
				for(int e=0;e<=k;e++)
				{					
					if((n-j)>=k)
						dp[i+1][j+e]+=dp[i][j]*gai[e];
					else
					{
						int cnt=k-(n-j);
						dp[i+1][j+e-cnt]+=dp[i][j]*gai[e];
					}
				}
			}
		}
		double ans=0;
		for(int i=1;i<=n;i++){
			ans+=i*dp[m][i];
		}
		printf("%.3f\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值