ACM-ICPC 2017 Asia Urumqi Coins
题意: 有n个硬币全部正面朝下,你有m次操作,每次操作选择k个硬币抛起来,问在最优策略下,你得到数量最多的朝上的硬币数量的期望。
思路: 我一开始想到的是dfs,但是感觉不行,复杂度太高了,后来又想到用概率dp做,我们每一次抛起来,规定现在有几个正面,然后去推这一次抛完后有几个正面,,最后得到概率,乘上期望就好了。但是dp的时候要注意类讨论,有一种情况是我们剩下的反面硬币不足k个,就需要用到已经是正面的硬币,这时候dp就要减去被卷进来的本来已经是正面的硬币。(记得初始化dp[0][0]==1,因为在没翻过的时候所有的硬币都是反面朝上,所以正面朝上0个的概率为1)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,m,k;
double gai[105];
double aa;
double dp[105][105];
double c[105][105];
double p[105];
int main()
{
ll t;
c[0][0]=1;
p[0]=1;
for(int i=1;i<=100;i++){
c[i][0]=1;
for(int j=1;j<=i;j++)
{
c[i][j]=c[i-1][j-1]+c[i-1][j];
}
p[i]=p[i-1]/2.0;
}
scanf("%lld",&t);
while(t--)
{
memset(dp,0,sizeof dp);
scanf("%d%d%d",&n,&m,&k);
for(int i=0;i<=k;i++)
{
gai[i]=c[k][i]*p[k];
}
dp[0][0]=1;
for(int i=0;i<m;i++){
for(int j=n;j>=0;j--){
if(dp[i][j]==0)continue;
for(int e=0;e<=k;e++)
{
if((n-j)>=k)
dp[i+1][j+e]+=dp[i][j]*gai[e];
else
{
int cnt=k-(n-j);
dp[i+1][j+e-cnt]+=dp[i][j]*gai[e];
}
}
}
}
double ans=0;
for(int i=1;i<=n;i++){
ans+=i*dp[m][i];
}
printf("%.3f\n",ans);
}
return 0;
}