随着机器学习在各行各业的广泛应用, 隐私泄露问题日益严重,联邦学习应运而生,从技术维度出发,重点研究隐私保护和数据安全问题。FATE作为全球首个联邦学习工业级开源框架,旨在提供安全的计算框架来支持联邦AI生态。
自2019年2月首次对外开源至今,FATE已迭代至1.6版本,并于2021年4月在行业内第一次实现了异构联邦学习平台的互通。
为支持多系统互联互通、优化算法、大幅提升性能,历时数月,开发团队将FATE进行了全面升级,并将在11月上线FATE 1.7版本。
本期圆桌会,将由FATE团队资深算法专家马国强老师、资深架构师曾纪策老师,为大家揭开FATE 1.7版本的“神秘面纱”。
分享摘要
FATE 1.7版本对 FATE 进行了全面升级。
● 架构上,拆分了FATE-Flow仓库,支持跨系统互联互通和多版本的FATE;
● 算法功能上,新增了联邦多分类特征工程、联邦学习两方算法等算法新组件,以及支持横向模型通用引擎serving等;
● 性能上,横纵向SecureBoost、PSI算法等性能大幅提升。
参与方式
点击下方链接,报名
第14期圆桌会 | FATE 1.7 版本内容介绍https://mp.weixin.qq.com/s/sp201AcC99NIJ63E7T7PkQ