百度大脑车型识别使用攻略

一.平台接入

此步骤比较简单,不多阐述。可参照上篇文档:

https://ai.baidu.com/forum/topic/show/943028

二.分析接口文档

1.打开http://ai.baidu.com/docs#/ImageClassify-API/fe686c3a,查看接口说明

(1)接口描述

该请求用于检测一张车辆图片的具体车型。即对于输入的一张图片(可正常解码,且长宽比适宜),输出图片的车辆品牌及型号、颜色及年份、位置信息。

注:当前只支持单主体识别,若图片中有多个车辆,则识别目标最大的车辆。

(2)请求说明

需要用到的信息有:

请求URL: https://aip.baidubce.com/rest/2.0/image-classify/v1/car

Header格式:Content-Type:application/x-www-form-urlencoded

URL参数:

image, 图像数据,base64编码,要求base64编码后大小不超过4M,最短边至少15px,最长边最大4096px,支持jpg/png/bmp格式 。注意:图片需要base64编码、去掉编码头后再进行urlencode。

top_num:返回准确率最高的几个识别结果,返回结果top n,默认5。

baike_num:返回百科信息的结果数,默认不返回

2.获取accesstoken

#client_id 为官网获取的AK, client_secret 为官网获取的SK
client_id =【百度云应用的AK】
client_secret =【百度云应用的SK】

#获取token
def get_token():
host = ‘https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=’ + client_id + ‘&client_secret=’ + client_secret
request = urllib.request.Request(host)
request.add_header(‘Content-Type’, ‘application/json; charset=UTF-8’)
response = urllib.request.urlopen(request)
token_content = response.read()
if token_content:
token_info = json.loads(token_content.decode(“utf-8”))
token_key = token_info[‘access_token’]
return token_key
3.准备一张用于识别的图片,存储在本地
在这里插入图片描述
三.识别结果
在这里插入图片描述
四.源码共享

# -*- coding: utf-8 -*-
#!/usr/bin/env python
import urllib
import urllib.parse
import urllib.request
import base64
import json
#client_id 为官网获取的AK, client_secret 为官网获取的SK
client_id = '****************'
client_secret = '************************'

#获取token
def get_token():
    host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + client_id + '&client_secret=' + client_secret
    request = urllib.request.Request(host)
    request.add_header('Content-Type', 'application/json; charset=UTF-8')
    response = urllib.request.urlopen(request)
    token_content = response.read()
    if token_content:
        token_info = json.loads(token_content.decode("utf-8"))
        token_key = token_info['access_token']
    return token_key

     # 读取图片
def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()


#获取汽车型号信息
def get_license_plate(path):
    request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/car"
    
    f = get_file_content(path)
    access_token=get_token()
    img = base64.b64encode(f)
    params = {"top_num":1, "image": img}
    params = urllib.parse.urlencode(params).encode('utf-8')
    request_url = request_url + "?access_token=" + access_token
    request = urllib.request.Request(url=request_url, data=params)
    request.add_header('Content-Type', 'application/x-www-form-urlencoded')
    response = urllib.request.urlopen(request)
    content = response.read()
    if content:
#        print (content.decode("utf-8"))
        cars = json.loads(content.decode("utf-8"))
        strover = '识别结果:'
        i = 1
        for car in cars['result']:
            strover += '{} 车型:{} \n            年份:{}\n            准确率:{}\n'.format(i,car['name'],car['year'],car['score'])
            i += 1
        print (strover)
        return content
    else:
        return ''

image_path='F:\paddle\m.jpg'
get_license_plate(image_path)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值