市集系列 | PaddleSeg搭配FastDeploy,打造「AI美甲试色」预览神器

本文介绍了如何利用飞桨PaddleSeg训练指甲分割模型,结合FastDeploy在边缘设备上进行部署,打造一款能实时预览美甲效果的工具。通过数据扩充提升模型效果,使用HSV模型进行色彩渲染,最终通过PyQt5实现用户交互,并使用FastDeploy简化部署流程,加速AI模型落地。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

005fac643b57cdde99ad4a25feb1eb66.gif

开发者市集是WAVE SUMMIT+峰会上由开发者们基于飞桨打造酷炫项目的展示和交流平台。开发者们脑洞大开的Al创意,每年都会吸引不少人驻足观看。

今年11月的WAVE SUMMIT+2022峰会也将展示30余个开源展示项目,覆盖智慧城市、体育、趣味互动等产业应用。通过市集系列文章,我们先一探究竟~

a8d0173814c667e2ae7c1952118fff8e.png

今天将由飞桨开发者技术专家张一乔介绍“美甲预览机”项目。

项目简介

很多人觉得时尚感重点都在衣服的选款,其实很多小细节也影响着造型给人的感觉,美甲就是这样的时髦细节之一。随着美甲的流行,做美甲已经成为了很多人的日常休闲方式之一。但是面对琳琅满目的美甲照片“卖家秀”,很多人会存有疑虑,这些美甲的颜色呈现在自己的手上会有什么效果?美甲预览机就为大家解决这个问题。

美甲预览机可以被看作在指甲上的AI试衣间(下文简称美甲机)。它的主要功能是实时识别摄像头拍摄的画面,并将画面中的指甲部分渲染成涂过美甲的样子,无需用户真正做一次美甲,即可便捷地观察到自己做过美甲的样子,可以用来给不确定美甲方案、单纯对美甲感兴趣的人进行预览。

项目效果

ea92851eb27bc1a175a100cdf8b40822.jpeg

项目流程图

本项目详细介绍了如何通过深度学习方法,轻松构造美甲机。项目内容包含训练指甲识别模型、Jetson Nano配置(Jetson Nano可用笔记本代替)、美甲机组装、效果优化等。项目主要流程如下:

48557b1f31be8877df284de185593214.png

技术细节

开发环境准备

AI Studio在线运行环境(若算力允许,可以自行替换其他训练设备)、个人主机、摄像头。(可选)Jetson Nano/Aibox、补光灯、双面胶、纸箱、线。

注:所有边缘设备,包括PC都可用于部署,本文以AiBox为例,使用FastDeploy进行部署。

关于FastDeploy,部署环境中可以直接使用CPU进行模型推理,安装命令如下:

pip install fastdeploy-python -f https://www.paddlepaddle.org.cn/whl/fastdeploy.html
  • 更多支持模型和安装(如GPU版本)请参考

https://github.com/PaddlePaddle/FastDeploy

训练分割模型

  • 首先,训练一个指甲分割模型,基础数据集的下载链接为

https://aistudio.baidu.com/aistudio/datasetdetail/68764/0

  • 获得数据后,按照下述格式写入txt文档

图片地址1<空格>标签地址1 

图片地址2<空格>标签地址2 

图片地址3<空格>标签地址3 

图片地址4<空格>标签地址4 

图片地址5<空格>标签地址5

我们选择飞桨图像分割套件PaddleSeg中的PP-LiteSeg模型进行训练,下载并安装PaddleSeg,链接如下。

https://github.com/PaddlePaddle/PaddleSeg

  • 训练需要准备的核心配置文件,如下

batch_size: 8 # 配置批大小和迭代次数
iters: 5000

train_dataset: # 设置训练集路径,图像增强方法仅包含随机裁剪/缩放/调整明暗度和归一
  type: Dataset
  dataset_root: /home/aistudio
  train_path: /home/aistudio/train.txt
  num_classes: 2
  mode: train
  transforms:
    - type: RandomPaddingCrop
      crop_size: [480, 360]
    - type: Resize
      target_size: [480, 36
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值