概述
- mongodb一个开源的,基于分布式的,面向文档存储的非关系型数据库,是非关系型数据库当中功能最丰富、最像关系数据库的
- 由C++语言编写的,使用JavaScript作为操作语言,是一个基于分布式文件存储的开源数据库系统
- 将数据存储为一个文档,数据结构由键值(key=>value)对组成。MongoDB 文档类似于 JSON 对象。字段值可以包含其他文档,数组及文档数组
- 非关系型的数据库即NoSQL:是对不同于传统的关系型数据库的数据库管理系统的统称,用于超大规模数据的存储,数据存储不需要固定的模式,无需多余操作就可以横向扩展
- 优点
- 高可扩展性
- 分布式计算
- 架构的灵活性,半结构化数据
- 没有复杂的关系
- 低成本
- 缺点
- 没有标准化
- 有限的查询功能
- 最终一致是不直观的程序
- 优点
数据库常规操作
帮助命令
help
创建数据库
use server1
db.server1.insert(obj);
//注:数据库创建,必须要插入一条数据后,show dbs命令才会显示,数据库已经添加
查看数据库
show dbs//查看所有数据库或show databases
db//查看当前数据库
//注:这个操作并不会显示系统所有的数据库,而只显示当前登录用户被授权的数据库
删除数据库
db.dropDatabase()//删除当前数据库
切换数据库
use 数据库名
创建集合
db.createCollection(name, options)//name: 要创建的集合名称,options: 可选参数, 指定有关内存大小及索引的选项
例:db.createCollection("mycol", { capped : true, autoIndexId : true, size : 6142800, max : 10000 } )
//capped:如果为 true,则创建固定集合。固定集合是指有着固定大小的集合,当达到最大值时,它会自动覆盖最早的文档。 当该值为 true 时,必须指定 size 参数
//autoIndexId:如为 true,自动在 _id 字段创建索引。默认为 false
//size:为固定集合指定一个最大值(以字节计)。 如果 capped 为 true,也需要指定该字段
//max:指定固定集合中包含文档的最大数量
查看集合
show collections
删除集合
db.collection.drop()
//清屏命令:cls
插入文档
db.COLLECTION_NAME.insert(document) //主键存在,则异常提示重复,不保存文档
db.COLLECTION_NAME.save(document) //主键存在则替换,如果文档不存在就是添加
db.COLLECTION_NAME.insertOne({"b": 3}) //参数只能是单条
db.COLLECTION_NAME.insertMany([{"b": 3}, {'c': 4}]) //参数只能是数组
查询文档
db.collection.find(query, projection)
- query:可选,使用查询操作符指定查询条件
操作 | 格式 | 范例 | RDBMS中的类似语句 |
---|---|---|---|
等于 | {:} | db.col.find({“by”:“菜鸟教程”}).pretty() | where by = ‘菜鸟教程’ |
小于 | {:{$lt:}} | db.col.find({“likes”:{$lt:50}}).pretty() | where likes < 50 |
小于或等于 | {:{$lte:}} | db.col.find({“likes”:{$lte:50}}).pretty() | where likes <= 50 |
大于 | {:{$gt:}} | db.col.find({“likes”:{$gt:50}}).pretty() | where likes > 50 |
大于或等于 | {:{$gte:}} | db.col.find({“likes”:{$gte:50}}).pretty() | where likes >= 50 |
不等于 | {:{$ne:}} | db.col.find({“likes”:{$ne:50}}).pretty() | where likes != 50 |
数据类型 | {:{$type:<number/string>}} | db.col.find({“likes”:{$type:1}}).pretty() | where likes != 50 |
in | {:{$in:[value]}} | db.col.find({“likes”:{$in:[1,2]}}).pretty() | where likes in (1,2) |
and | {:{$and:[{对象1:{条件},对象2:{条件}]}}或{:{对象1:{条件1,条件2}}} | db.col.find({$and:[{条件1},{条件2}]}).pretty() | where 条件1 and 条件2 |
or | 语法与and相同 | ||
not | {:{$not:{对象:null}} | db.col.find($not:{like:null}) | where like is not null |
null | {:{对象:null} | db.col.find({like:null}) | where like=null |
使用正则 | db.col.find({title:/^教/}) |
- projection:可选,使用投影操作符指定返回的键。查询时返回文档中所有键值, 只需省略该参数即可(默认省略)
- 返回指定字段和_id字段:在结果集中,只有item和qty字段,默认_id字段也是返回的。代码如下:db.inventory.find( { type: ‘food’}, { item: 1, qty: 1} )
- 仅返回指定字段:可以通过在projection中指定排除_id字段将其从结果中去掉。代码如下:db.inventory.find( { type: ‘food’}, { item: 1, qty:1, _id:0} )
- 返回除排除掉以外的字段:可以使用一个projection排除一个或者一组字段,如下: 代码如下:db.inventory.find( { type: ‘food’}, { type:0} )8
- 注:如果你需要以易读的方式来读取数据,可以使用 pretty() 方法,pretty() 方法以格式化的方式来显示所有文档
更新文档
db.collection.update(
<query>,
<update>,
{
upsert: <boolean>,
multi: <boolean>,
writeConcern: <document>
}
)
db.collection.updateOne(参数与上同)//更新符合条件的第一条
db.collection.updateOne(参数与上同)//更新所有符合条件的数据
- query : update的查询条件,类似sql update查询内where后面的,规则与查询部分相同
- update : update的对象和一些更新的操作符(如[Math Processing Error],inc…)等,也可以理解为sql update查询内set后面的
- 例:db.col.update({‘title’:‘MongoDB 教程’},{$set:{‘title’:‘MongoDB’}})
- 操作符
- $inc:{ $inc : { field : value } }。意思对一个数字字段field增加value
- $set:{ $set : { field : value } }。赋值语句
- $unset:{ $unset : { field : 任意内容} }。就是删除field字段
- $push:{ $push : { field : value } }。把value追加到field里面去,field一定要是数组类型才行,如果field不存在,会新增一个数组类型加进去
- $pushAll:{ $pushAll : { field : value_array } }。将数组中的每一项,追加多个值到一个数组字段内
- $addToSet:{ $addToSet : { field : value } }。增加一个值到数组内,而且只有当这个值不在数组内才增加
- $pop:{ $pop : { field : 1 } } 删除最后一个值,{ $pop : { field : -1 } }删除第一个值
- $pull:{ $pull : { field : value } }。从数组field内删除一个等于value值
- $pullAll:{ $pullAll : { field : value_array } }。可以一次删除数组内的多个值
- $是他自己的意思,代表按条件找出的数组里面某项他自己
- upsert : 可选,这个参数的意思是,如果不存在update的记录,是否插入objNew,true为插入,默认是false,不插入
- multi : 可选,mongodb 默认是false,只更新找到的第一条记录,如果这个参数为true,就把按条件查出来多条记录全部更新
- writeConcern :可选,抛出异常的级别
- WriteConcern.NONE:没有异常抛出
- WriteConcern.NORMAL:仅抛出网络错误异常,没有服务器错误异常
- WriteConcern.SAFE:抛出网络错误异常、服务器错误异常;并等待服务器完成写操作
- WriteConcern.MAJORITY: 抛出网络错误异常、服务器错误异常;并等待一个主服务器完成写操作
- WriteConcern.FSYNC_SAFE: 抛出网络错误异常、服务器错误异常;写操作等待服务器将数据刷新到磁盘
- WriteConcern.JOURNAL_SAFE:抛出网络错误异常、服务器错误异常;写操作等待服务器提交到磁盘的日志文件
- WriteConcern.REPLICAS_SAFE:抛出网络错误异常、服务器错误异常;等待至少2台服务器完成写操作
删除文档
db.collection.remove(
<query>,
{
justOne: <boolean>,
writeConcern: <document>
}
)
db.collection.deleteOne() //删除符合条件的第一条
db.collection.deleteMany() //删除所有符合条件的数据
- query :(可选)删除的文档的条件
- justOne : (可选)如果设为 true 或 1,则只删除一个文档,如果不设置该参数,或使用默认值 false,则删除所有匹配条件的文档
- writeConcern :(可选)抛出异常的级别
分页
db.COLLECTION_NAME.find().limit(NUMBER).skip(NUMBER)
// limit限制输出个数,skip跳过输出个数。两者可以单独使用也可以结合使用
总数
db.COLLECTION_NAME.find().count()
排序
db.COLLECTION_NAME.find().sort({title:-1,likes:1}) //对象的第一个属性为主排序,主排序相同的内容再实现后面属性的排序
//注:skip(), limilt(), sort() 三个放在一起执行的时候,执行的顺序是先 sort(), 然后是 skip(),最后是显示的 limit()
索引
db.collection.createIndex(keys, options) //keys对象参数为1表示正序建立索引,-1表示逆序建立索引。如果添加多个属性为联合索引
- options
options参数 | Type | 描述 |
---|---|---|
background | Boolean | 建索引过程会阻塞其它数据库操作,background可指定以后台方式创建索引,即增加 “background” 可选参数。 “background” 默认值为false |
unique | Boolean | 建立的索引是否唯一。指定为true创建唯一索引。默认值为false. |
name | string | 索引的名称。如果未指定,MongoDB的通过连接索引的字段名和排序顺序生成一个索引名称。用于索引删除 |
sparse | Boolean | 对文档中不存在的字段数据不启用索引;这个参数需要特别注意,如果设置为true的话,在索引字段中不会查询出不包含对应字段的文档.。默认值为 false. |
expireAfterSeconds | integer | 指定一个以秒为单位的数值,完成 TTL设定,设定集合的生存时间 |
v | index version | 索引的版本号。默认的索引版本取决于mongod创建索引时运行的版本 |
weights | document | 索引权重值,数值在 1 到 99,999 之间,表示该索引相对于其他索引字段的得分权重 |
default_language | string | 对于文本索引,该参数决定了停用词及词干和词器的规则的列表。 默认为英语 |
language_override | string | 对于文本索引,该参数指定了包含在文档中的字段名,语言覆盖默认的language,默认值为 language |
- 查看集合索引
- db.col.getIndexes()
- 查看集合索引大小
- db.col.totalIndexSize()
- 删除集合所有索引
- db.col.dropIndexes()
- 删除集合指定索引
- db.col.dropIndex(“索引名称”)
- 设置定时删除任务
- db.col.createIndex({“createDate”: 1},{expireAfterSeconds: 180}) // 在数据记录中 createDate 为日期类型之后180删除
- 索引关键字段必须是 Date 类型
- 非立即执行:扫描 Document 过期数据并删除是独立线程执行,默认 60s 扫描一次,删除也不一定是立即删除成功
- 单字段索引,混合索引不支持
数据库高级操作
- 当出现多个集合之间数据组织的问题时,NoSQL不像关系型数据库,通过关系来实现多数据直接的结合。要想实现多文档,多集合的管理数据,就要使用应用层来回查询。使用这种方式将会消耗大量的网络数据,不利于数据库操作的效率。
聚合
- MongoDB中聚合的方法使用aggregate()。聚合就是可以对数据查询进行多次过滤操作,以达到复杂查询的目的。聚合查询函数接收一个数组,数组里面是若干个对象,每个对象就是一次查询的步骤。前一个查询的查询结果,作为后一个查询的筛选内容
- 管道:将MongoDB文档在一个管道处理完毕后将结果传递给下一个管道处理,聚合就是利用多个操作(类似于sql子句),通过管道连接到一起,管道无顺序,且可以重复
- 表达式:处理输入文档并输出。表达式是无状态的,只能用于计算当前聚合管道的文档,不能处理其它的文档
- $ sum:计算总和(例:db.mycol.aggregate([{$ group : {_id : “$ by_user”, num_tutorial : { s u m : " sum : " sum:"likes"}}}]))
- $avg:计算平均值
- $min:获取集合中所有文档对应值得最小值
- $max:获取集合中所有文档对应值得最大值
- $push:在结果文档中插入值到一个数组中
- $addToSet:在结果文档中插入值到一个数组中,但不创建副本
- $first:根据资源文档的排序获取第一个文档数据
- $last:根据资源文档的排序获取最后一个文档数据
db.getCollection("student").aggregate([
{
"$match" : {
"age" : {
"$gt" : 20.0
}
}
},
{
"$lookup" : {
"from" : "room",
"localField" : "class",
"foreignField" : "name",
"as" : "num"
}
},
{
"$unwind" : {
"path" : "$num",
"includeArrayIndex" : "l",
"preserveNullAndEmptyArrays" : false
}
},
{
"$project" : {
"num.name" : 1.0
}
},
{
"$count" : "cou"
}
])
- 常用的管道查询操作
- $project:修改输入文档的结构。可以用来重命名、增加或删除域,也可以用于创建计算结果以及嵌套文档,类似于select
- $match:用于过滤数据,只输出符合条件的文档, $match使用MongoDB的标准查询操作,类似于where与having
- $limit:用来限制MongoDB聚合管道返回的文档数,类似于limit
- $skip:在聚合管道中跳过指定数量的文档,并返回余下的文档,类似于limit
- $unwind:将文档中的某一个数组类型字段拆分成多条,每条包含数组中的一个值
- $group:将集合中的文档分组,可用于统计结果,类似于group by
- $sort:将输入文档排序后输出,类似于order by
- $geoNear:输出接近某一地理位置的有序文档
- $lookup:连表查询,类似于select
- $lookup
db.emp.aggregate([
{
$lookup:{
from:'dept', //连接的表
localField:'deptId', //主键
foreignField:'id', //外键
as:'mydept' //别名
}
}
]);
副本集(复制)
- 将数据同步在多个服务器的过程,提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性, 并可以保证数据的安全性
- 至少需要两个节点,一个是主节点,负责处理客户端请求,其余的都是从节点,负责复制主节点上的数据,形成一主一从、一主多从的搭配方式
- 对主节点的增删改操作会映射到从节点,从而保证从节点的数据与主节点一致。对从节点进行查询操作
- MongoDB副本集设置
- 创建mongoDB服务器:
mongod --port 27017 --dbpath "D:\mongodb\data" --replSet rs0
- 主节点启动一个新的副本集
rs.initiate() // 查看副本集的配置:rs.conf() // 查看副本集状态: rs.status()
- 副本集添加成员
rs.add("localhost:27017")
事务
- MongoDB4.0开始支持事务,前提必须在副本集中,必须在同一个session中
- 获取会话:session=db.getMongo().startSession();
- 启动事务:session.startTransaction();
- 执行操作:session.getDatabase(“test”).user.insert({name:“ming”, age:19})
- 事务提交:session.commitTransaction();
- 事务回滚:session.abortTransaction();
- 结束会话:session.endSession();
分片
- 为满足MongoDB数据量大量增长的需求,可以通过在多台机器上分割数据,使得数据库系统能存储和处理更多的数据
- 三个主要组件
- Shard:用于存储实际的数据块,实际生产环境中一个shard server角色可由几台机器组个一个replica set承担,防止主机单点故障
- Config Server:mongod实例,存储了整个 ClusterMetadata,其中包括 chunk信息
- Query Routers:前端路由,客户端由此接入,且让整个集群看上去像单一数据库,前端应用可以透明使用
数据库备份与恢复
- 将数据库备份成文件
mongodump -h localhost -d server1 -u server1 -p xxx --authenticationDatabase admin -o E:\log
// -h:链接主机
// -d:备份数据库名
// -u:用户名
// -p:密码
// -o:导出地址
// –authenticationDatabase admin:指定身份验证数据库
- 将文件导入到数据库
mongorestore -h localhost -d server1 -u server1 -p xxx --authenticationDatabase admin --dir E:\log\server1
// –host <:port>, -h <:port>: MongoDB所在服务器地址,默认为: localhost:27017
// –db , -d:需要恢复的数据库实例
// –drop:恢复的时候,先删除当前数据,然后恢复备份的数据。就是说,恢复后,备份后添加修改的数据都会被删除
// –dir:指定备份的目录
结合springboot
- maven依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>
- 主配置文件
spring.data.mongodb.uri=mongodb://localhost:27017/test
- 实体类
@Getter
@Setter
@Document(collation="user")
public class User implements Serializable {
@Id
private ObjectId _id;
@Field("name")
private String name;
@Field("age")
private Integer age;
@Field("city")
private String city;
}
- Repository映射
@Repository
public interface UserRepository extends MongoRepository<User, ObjectId> {
//MongoRepository包含增删改查方法,详细参照jpa
//也可自定义方法,若方法名符合约定,即可实现响应功能
//find+全局修饰符(All,User,distinct,first,top)+by+字段+运算符+逻辑运算符....+排序 参数要按照条件给足,如果需要分页,增加一个参数Pageable参数
// select * from user where age>= ? and age <= ? and name like ?
public List<User> findByAgeBetweenAndNameIsLikeOOrderByAgeAsc(Integer ageStart, Integer ageEnd, String name, Pageable page);
}
mongoTemplate:可实现聚合,进行复杂操作
- 不需要在实体类中配置Document, 需要在每一个操作中,手动添加Collection
@Autowired
private MongoTemplate mongoTemplate;
-
常用方法
- mongoTemplate.findOne(query,Student.class):查询Student文档的第一条
- mongoTemplate.findAll(Student.class):查询Student文档的全部数据
- mongoTemplate.findById(id, Student.class):查询Student文档id为id的数据
- mongoTemplate.find(query, Student.class) : 根据query内的查询条件查询
- mongoTemplate.upsert(query, update, Student.class):更新对象不存在则去添加
- mongoTemplate.updateFirst(query, update, Student.class):修改查询返回结果集的第一条
- mongoTemplate.updateMulti(query,update,Student.class):修改查询返回结果集的全部
- mongoTemplate.remove(query, Student.class): 删除
- mongoTemplate.save(student): 新增
-
Query对象
- 创建一个query对象(用来封装所有条件对象),再创建一个criteria对象(用来构建条件),创建Pattern对象(用来封装正则表达式)
- Query query = new Query();
- Criteria criteria = new Criteria();
- Pattern pattern= Pattern.compile(“^.“+“条件”+”.$”, Pattern.CASE_INSENSITIVE);
- 精准条件:criteria.and(“key”).is(“条件”)
- 模糊条件:criteria.and(“key”).regex(pattern)
- 封装条件:query.addCriteria(criteria)
- 大于(创建新的criteria):Criteria gt = Criteria.where(“key”).gt(“条件”)
- 小于(创建新的criteria):Criteria lt = Criteria.where(“key”).lt(“条件”)
- query.addCriteria(new Criteria().andOperator(gt,lt));
- 一个query中只能有一个andOperator(),其参数也可以是Criteria数组。
- 排序 :query.with(new Sort(Sort.Direction.ASC, “age”). and(new Sort(Sort.Direction.DESC, “date”)))
- 创建一个query对象(用来封装所有条件对象),再创建一个criteria对象(用来构建条件),创建Pattern对象(用来封装正则表达式)
-
Update对象
- Update update = new Update().set(“publish”, Student.getPublish()).set(“info”, Student.getInfo()).set(“参数名”, 参数值)
-
聚合
- 实例
Aggregation customerAgg = Aggregation.newAggregation( Aggregation.project("_id","name","city","age"), Aggregation.group("city").first("name").as("name").avg("age").as("avgAge").count().as("totalNum") ); AggregationResults<Map> users = mongoTemplate.aggregate(customerAgg, "user", Map.class); List<Map> list = users.getMappedResults();
- project:列出所有本次查询的字段,包括查询条件的字段和需要搜索的字段
- match:搜索条件criteria
- unwind:某一个字段是集合,将该字段分解成数组
- group:分组的字段,以及聚合相关查询
- sum:求和(同sql查询)
- count:数量(同sql查询)
- avg:平均值(同sql查询)
- as:别名(同sql查询)
- addToSet:将符合的字段值添加到一个集合或数组中
- first:歧义字段取第一个值
- sort:排序
- skip&limit:分页查询