给你一个长度为 n 的整数数组,请你判断在 最多 改变 1 个元素的情况下,该数组能否变成一个非递减数列。
我们是这样定义一个非递减数列的: 对于数组中所有的 i (0 <= i <= n-2),总满足 nums[i] <= nums[i + 1]。
示例 1:
输入: nums = [4,2,3]
输出: true
解释: 你可以通过把第一个4变成1来使得它成为一个非递减数列。
示例 2:
输入: nums = [4,2,1]
输出: false
解释: 你不能在只改变一个元素的情况下将其变为非递减数列。
方法:
这道题给了我们一个数组,说我们最多有1次修改某个数字的机会,
问能不能将数组变为非递减数组。题目中给的例子太少,不能覆盖所有情况,我们再来看下面三个例子:
4,2,3
-1,4,2,3
2,3,3,2,4
我们通过分析上面三个例子可以发现,当我们发现后面的数字小于前面的数字产生冲突后,
[1]有时候需要修改前面较大的数字(比如前两个例子需要修改4),
[2]有时候却要修改后面较小的那个数字(比如前第三个例子需要修改2),
那么有什么内在规律吗?是有的,判断修改那个数字其实跟再前面一个数的大小有关系,
首先如果再前面的数不存在,比如例子1,4前面没有数字了,我们直接修改前面的数字为当前的数字2即可。
而当再前面的数字存在,并且小于当前数时,比如例子2,-1小于2,我们还是需要修改前面的数字4为当前数字2;
如果再前面的数大于当前数,比如例子3,3大于2,我们需要修改当前数2为前面的数3。
class Solution {
public:
bool checkPossibility(vector<int>& nums) {
if(nums.empty() || nums.size() <=1)
return true;
int cnt=0;
for(int i=1; i<nums.size() && cnt<2; i++)
{
if(nums[i-1]<=nums[i] )
continue;//要是正常递增,就开始下一轮循环
cnt++;//出现++说明没有正常递增
if(i-2>=0 && nums[i-2]>nums[i] )
{
//第1种
nums[i] = nums[i-1];
}else{
//第2,3种
nums[i-1]=nums[i];
}
}
//cnt增加两次说明这个数组没救了!
return cnt<=1;
}
};