给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
首先找到需要删除的节点;
如果找到了,删除它。
说明: 要求算法时间复杂度为 O(h),h 为树的高度。
示例:
root = [5,3,6,2,4,null,7]
key = 3
5
/
3 6
/ \
2 4 7
给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。
一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。
5
/
4 6
/
2 7
另一个正确答案是 [5,2,6,null,4,null,7]。
5
/
2 6
\
4 7
原文参考地址:
删除节点
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if(root==NULL) return root;
if(root->val==key){
//if(root->left==NULL && root->right =NULL) return root;
if(root->left==NULL){
return root->right;//左子树为空返回右子树就代表删除了根节点
}else if(root->right==NULL)
{
return root->left;
}else{
TreeNode* cur = root->right;
while(cur->left) cur=cur->left;
cur->left = root->left;
root=root->right;
return root;//结束之后都返回根节点
}
}
if(key>root->val) root->right=deleteNode(root->right, key);
if(key<root->val) root->left=deleteNode(root->left,key);
return root;//结束之后都返回根节点
}
};
// class Solution {
// public:
// TreeNode* deleteNode(TreeNode* root, int key) {
// if (root == NULL) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了
// if (root->val == key) {
// // 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
// // 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
// if (root->left == NULL) return root->right;
// // 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
// else if (root->right == NULL) return root->left;
// // 第五种情况:左右孩子节点都不为空,则将删除节点的左孩子放到删除节点的右孩子的最左面节点的左孩子的位置
// // 返回删除节点右孩子为新的根节点。
// else {
// TreeNode* cur = root->right;
// while(cur->left != NULL) {
// cur = cur->left;
// }
// cur->left = root->left;
// root = root->right;
// return root;
// }
// }
// if (root->val > key) root->left = deleteNode(root->left, key);
// if (root->val < key) root->right = deleteNode(root->right, key);
// return root;
// }
// };