图的最小生成树算法的实现(Prim算法)
一、实验目的
1.熟悉连通图最小生成树的算法实现。
2.掌握带权图的存储结构和处理方法。
二、实验内容
1、连通图的最小代价生成树成为最小生成树。
2、采用图的邻接矩阵存储结构来存储边上的权值。
3、图中顶点最大数定义为9个,输入顶点个数为9个以内整数。
4、顶点输入格式,如果是三个顶点“A,B,C”。
5、边的输入格式,如AB,AB边上的权重为3,为“A,B,3”。
6、以输入3个顶点3条边为例,从第1个顶点出发生成最小树,并按照发现最小边的先后顺序输出。
三、实验步骤
1、输入顶点数和边数(输入格式为:顶点数,边数)。
2、输入顶点名称(输入格式为:a,b,c…)。
3、输入每条边对应的两个顶点及权重(输入格式为:a,b,权重)。
4、依照“起点,终点,权值”的形式输出最小生成树的各条边。
样例输入:
3,3
A,B,C
A,B,1
A,C,2
B,C,3
样例输出:
A,B,1
A,C,2
#include <stdio.h>
#define INFINITY 10000
#define MAXVEX 20 //最大顶点数
typedef struct{
char adjvex;
int lowcost;
}closedge[MAXVEX];
typedef struct{
char adjvex[MAXVEX]; //顶点表
int arcs[MAXVEX][MAXVEX]; //邻接矩阵
int vexnum, arcnum; //图的当前点数和边数
}AMGraph;
int LocateVex(AMGraph *G, char x)
{
int i;
for(i = 0; i < G->vexnum; i++)
if(x == G->adjvex[i])
return i;
return -1;
}
void CreateUDN(AMGraph *G) //采用邻接矩阵表示法创建无向网
{
int i, j, k, weight;
char a, b;
printf("Input the vexnum and arcnum:");
scanf("%d,%d", &G->vexnum, &G->arcnum);
printf("Input the information of vertexes:\n");
for(i = 0; i < G->vexnum; i++){
getchar();
scanf("%c",&(G->adjvex[i]));
}
for(i = 0; i < G->vexnum; i++)
for(j = 0; j < G->vexnum; j++)
G->arcs[i][j] = INFINITY;
printf("Enter the vertices attached to an edge and weight in turn:\n");
for(k = 0; k < G->arcnum; k++) {
getchar();
scanf("%c,%c,%d",&a,&b,&weight);
i = LocateVex(G, a);
j = LocateVex(G, b);
G->arcs[i][j] = weight;
G->arcs[j][i] = weight;
}
}
int Minimum(closedge M, AMGraph *G) {
int i, j, k, min;
i = 0;
while(!M[i].lowcost)
i++;
min = M[i].lowcost;
k = i;
for(j = i + 1; j < G->vexnum; j++)
if(M[j].lowcost > 0)
if(min > M[j].lowcost) {
min = M[j].lowcost;
k = j;
}
return k;
}
void MiniSpanTree_Prim(AMGraph *G, char u)
{
int i, j, k;
char a, b;
closedge L;
k = LocateVex(G, u);
for(i = 0; i < G->vexnum; i++) //初始化辅助数组
{
if(i != k) {
L[i].adjvex = u;
L[i].lowcost = G->arcs[k][i];
}
}
L[k].lowcost = 0;
printf("The obtained MST is:\n");
for(i = 1; i < G->vexnum; i++) {
k = Minimum(L, G);
a = L[k].adjvex;
b = G->adjvex[k];
printf("%c,%c,%d\n", a, b, G->arcs[LocateVex(G, a)][k]); //输出最小生成树的边
L[k].lowcost = 0;
for(j = 0; j < G->vexnum; j++) {
if(G->arcs[k][j] < L[j].lowcost) {
L[j].adjvex = G->adjvex[k];
L[j].lowcost = G->arcs[k][j];
}
}
}
}
int main()
{
AMGraph G;
CreateUDN(&G);
MiniSpanTree_Prim(&G, G.adjvex[0]);
return 0;
}