同余最短路
前置
给定m个数,这m个数可以重复取,问最大的这m个数不能拼成的数,或者给定一定范围,范围里有多少个数是这m个数可以拼成的,对于这种问题我们可以考虑同余最短路的算法。
P3403 跳楼机
同余最短路介绍
首先我们要选择一个 b a s e base base作为基底,之后所有的距离就可以描述成 a ∗ b a s e + b a * base + b a∗base+b。
在这题中我们选定 x x x作为base。
d i s [ i ] = v a l u e dis[i] = value dis[i]=value有如下含义: v a l u e ≡ i ( m o d x ) value \equiv i \pmod x value≡i(modx),也就是同余的条件下,我们可以到达的最小的楼层,这样我们剩下的楼层就可以通过 + x + x +x的操作去访问,所以我们最后的可以到达的楼层也就是 ∑ i = 0 x − 1 ( h − d i s [ i ] ) / x + 1 \sum _{i = 0} ^ {x - 1} (h - dis[i]) / x + 1 ∑i=0x−1(h−dis[i])/x+1,这句应该稍加简单理解一下就好了。
接下来我们考虑如何建边,显然有 i − > ( i + y ) % x c o s t = y , i − > ( i + z ) % x c o s t = z i - > (i + y) \% x\ cost = y, i -> (i + z) \% x\ cost = z i−>(i+y)%x cost=y,i−>(i+z)%x cost=z。
所以我们可以对所有的 x ∈ [ 0 , x − 1 ] x\in [0, x - 1] x∈[0,x−1],分别同上建立一条边权为 y y y的,一条边权为 z z z的边。然后再去跑一遍最短路,我们就可以得到所有的 d i s dis dis了。
代码
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;
inline ll read() {
ll f = 1, x = 0;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f * x;
}
void print(ll x) {
if(x < 10) {
putchar(x + 48);
return ;
}
print(x / 10);
putchar(x % 10 + 48);
}
const int N = 1e5 + 10;
ll h, dis[N];
bool visit[N];
vector<pii> G[N];
void spfa() {
memset(dis, 0x3f, sizeof dis);
queue<int> q;
q.push(1);
dis[1] = 1, visit[1] = 1;
while(q.size()) {
int temp = q.front();
q.pop();
visit[temp] = 0;
for(pii i : G[temp]) {
if(dis[i.first] > dis[temp] + i.second) {
dis[i.first] = dis[temp] + i.second;
if(!visit[i.first]) {
q.push(i.first);
visit[i.first] = 1;
}
}
}
}
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
h = read();
int x = read(), y = read(), z = read();
if(x == 1 || y == 1 || z == 1) {//注意如果有一个数为1,必须特判,不然我们跑出来的最短路dis,将会重复计数。
printf("%lld\n", h);
return 0;
}
for(int i = 0; i < x; i++) {
G[i].pb(mp((i + y) % x, y));
G[i].pb(mp((i + z) % x, z));
}
spfa();
ll ans = 0;
for(int i = 0; i < x; i++) {
if(dis[i] <= h) {
ans += (h - dis[i]) / x + 1;
}
}
printf("%lld\n", ans);
return 0;
}