[CQOI2007]涂色PAINT
思路
显然我们可以考虑用 d p dp dp来求解问题,碰到那种一眼没思路的题稳是 d p dp dp没跑了,那么我们就往 d p dp dp方面去考虑吧。
我们定义 d p [ i ] [ j ] dp[i][j] dp[i][j],表示把 [ i , j ] [i, j] [i,j]这个区间涂上颜色要用多少步,显然有 d p [ i ] [ j ] = 1 , i = = j dp[i][j] = 1, i == j dp[i][j]=1,i==j,
接下来我们考虑如何使这个状态进行转移,当有两个邻近的颜色使一样的时候,我们可以把它们当成一种颜色一起涂色,所以当 s t r [ i ] = = s t r [ i + 1 ] str[i] == str[i + 1] str[i]==str[i+1]时,显然有 d p [ i ] [ i ] = d p [ i ] [ i + 1 ] dp[i][i] = dp[i][i + 1] dp[i][i]=dp[i][i+1],同样的这个性质可以拓展到整条链上,当 s t r [ i ] = = s t r [ j ] str[i] == str[j] str[i]==str[j],我们一定有 d p [ i ] [ j ] = m i n ( d p [ i + 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j] = min(dp[i + 1][j], dp[i][j - 1]) dp[i][j]=min(dp[i+1][j],dp[i][j−1])。
这里我们已经把大多的情况给考虑完了,还剩下一种 s t r [ i ] ! = s t r [ j ] str[i] != str[j] str[i]!=str[j],这个时候我们显然要把这个区域分成两份来进行涂色,这个时候我们就可以枚举端点 k ∈ [ l , r ] k \in [l, r] k∈[l,r],然后取这些断点和的最小值就行。
代码
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;
inline ll read() {
ll f = 1, x = 0;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f * x;
}
void print(ll x) {
if(x < 10) {
putchar(x + 48);
return ;
}
print(x / 10);
putchar(x % 10 + 48);
}
const int N = 55;
char str[N];
int dp[N][N], n;
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
cin >> str + 1;
n = strlen(str + 1);
memset(dp, 0x3f, sizeof dp);
for(int len = 1; len <= n; len++) {
for(int l = 1; l + len - 1 <= n; l++) {
int r = l + len - 1;
if(len == 1) {
dp[l][r] = 1;
}
else if(str[l] == str[r]) {
dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]);
}
else {
for(int k = l; k < r; k++) {
dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]);
}
}
}
}
cout << dp[1][n] << endl;
return 0;
}