[51 nod 1238] 最小公倍数之和 V3(杜教筛)

1238 最小公倍数之和 V3

推式子

∑ i = 1 n ∑ j = 1 n l c m ( i , j ) = ∑ i = 1 n ∑ j = 1 n i j g c d ( i , j ) = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 n i j d ( g c d ( i , j ) = = d ) = ∑ d = 1 n d ∑ i = 1 n d ∑ j = 1 n d i j ( g c d ( i , j ) = = 1 ) = ∑ d = 1 n d ∑ i = 1 n d ∑ j = 1 n d i j ∑ k ∣ g c d ( i , j ) μ ( k ) = ∑ d = 1 n d ∑ k = 1 n d k 2 μ ( k ) ∑ i = 1 n d k ∑ j = 1 n d k i j \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} lcm(i, j)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{n}\frac{ij}{gcd(i, j)}\\ =\sum_{d = 1} ^{n} \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}{d} (gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}ij(gcd(i, j) == 1)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}ij\sum_{k \mid gcd(i, j)} \mu(k)\\ = \sum_{d = 1} ^{n} d \sum_{k = 1} ^{\frac{n}{d}} k ^ 2\mu(k)\sum_{i = 1} ^{\frac{n}{dk}} \sum_{j = 1} ^{\frac{n}{dk}}ij\\ i=1nj=1nlcm(i,j)=i=1nj=1ngcd(i,j)ij=d=1ni=1nj=1ndij(gcd(i,j)==d)=d=1ndi=1dnj=1dnij(gcd(i,j)==1)=d=1ndi=1dnj=1dnijkgcd(i,j)μ(k)=d=1ndk=1dnk2μ(k)i=1dknj=1dknij

化简到这里好像能通过两次数论分块得到我们的答案,但是复杂度是 O ( n ) O(n) O(n)的,显然不行,所以我们考虑另一种化简方法。
∑ i = 1 n ∑ j = 1 n l c m ( i , j ) = ∑ i = 1 n ∑ j = 1 n i j g c d ( i , j ) = ∑ d = 1 n ∑ i = 1 n ∑ j = 1 n i j d ( g c d ( i , j ) = = d ) = ∑ d = 1 n d ∑ i = 1 n d ∑ j = 1 n d i j ( g c d ( i , j ) = = 1 ) 这 里 两 个 的 上 届 都 是 n d , 所 以 我 们 可 以 分 类 讨 论 一 下 , i > j , i = = j , i < j , 由 于 i > j , i < j 可 以 合 并 , 所 以 上 式 变 成 = ∑ d = 1 n d ( 2 ∑ i = 1 n d i ( ∑ j = 1 i j × ( g c d ( i , j ) = = 1 ) ) − 1 ) 根 据 欧 拉 函 数 定 理 , 我 们 可 以 再 次 化 简 = ∑ d = 1 n d ( 2 ∑ i = 1 n d i ( i ϕ ( i ) + ( i = = 1 ) 2 ) − 1 ) = ∑ d = 1 n d ∑ i = 1 n d i 2 ϕ ( i ) 接 下 来 就 是 按 照 套 路 用 杜 教 筛 求 解 ∑ i = 1 n d i 2 ϕ ( i ) 了 S ( n ) = ∑ i = 1 n i 2 ϕ ( i ) = ∑ i = 1 n f ( i ) ∑ i = 1 n ( f ∗ g ) ( i ) = ∑ i = 1 n g ( i ) S ( n i ) g ( 1 ) S ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ d = 2 n g ( i ) S ( n d ) ( f ∗ g ) ( i ) = ∑ d ∣ i f ( d ) g ( i d ) = ∑ d ∣ i d 2 ϕ ( d ) g ( i d ) 容 易 想 到 ∑ d ∣ i ϕ ( d ) = i , 所 以 如 果 可 以 提 出 d 2 那 就 完 美 了 , 我 们 可 以 另 g ( i ) = i 2 , 上 式 变 成 ∑ d ∣ i d 2 ϕ ( d ) i 2 d 2 = i 2 ∑ d ∣ i ϕ ( d ) = i 3 S ( n ) = ∑ i = 1 n i 3 − ∑ d = 1 n d 2 S ( n d ) = n 2 ( n + 1 ) 2 4 − ∑ d = 1 n d 2 S ( n d ) \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} lcm(i, j)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{n}\frac{ij}{gcd(i, j)}\\ =\sum_{d = 1} ^{n} \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} \frac{ij}{d} (gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}ij(gcd(i, j) == 1)\\ 这里两个的上届都是\frac{n}{d},所以我们可以分类讨论一下,i > j, i == j, i < j,由于i > j, i < j可以合并,所以上式变成\\ = \sum_{d = 1} ^{n} d (2\sum_{i = 1} ^{\frac{n}{d}} i (\sum_{j = 1} ^{i}j\times (gcd(i, j) == 1)) - 1)\\ 根据欧拉函数定理,我们可以再次化简\\ = \sum_{d = 1} ^{n} d (2\sum_{i = 1} ^{\frac{n}{d}} i (\frac{i\phi(i) + (i == 1)}{2}) - 1)\\ = \sum_{d = 1} ^{n} d \sum_{i = 1} ^{\frac{n}{d}} i ^ 2 \phi(i)\\ 接下来就是按照套路用杜教筛求解\sum_{i = 1} ^{\frac{n}{d}} i ^ 2 \phi(i)了\\ S(n) = \sum_{i = 1} ^{n} i ^ 2 \phi(i) = \sum_{i = 1} ^{n} f(i) \\ \sum_{i = 1} ^{n} (f * g)(i) \\ = \sum_{i = 1} ^{n}g(i)S(\frac{n}{i})\\ g(1)S(n) = \sum_{i = 1} ^{n} (f * g)(i) - \sum_{d = 2} ^{n} g(i)S(\frac{n}{d})\\ (f * g)(i) = \sum_{d \mid i} f(d)g(\frac{i}{d}) = \sum_{d \mid i} d ^ 2 \phi(d)g(\frac{i}{d})\\ 容易想到\sum_{d \mid i} \phi(d) = i, 所以如果可以提出d ^ 2那就完美了,我们可以另g(i) = i ^ 2,上式变成\\ \sum_{d \mid i} d ^ 2 \phi(d) \frac{i ^ 2}{d ^ 2} = i ^ 2 \sum_{d \mid i} \phi(d) = i ^ 3 \\S(n) = \sum_{i = 1} ^{n} i ^ 3 - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}{d})\\ = \frac{n ^ 2 (n + 1) ^ 2}{4} - \sum_{d = 1} ^{n} d ^ 2S(\frac{n}{d})\\ i=1nj=1nlcm(i,j)=i=1nj=1ngcd(i,j)ij=d=1ni=1nj=1ndij(gcd(i,j)==d)=d=1ndi=1dnj=1dnij(gcd(i,j)==1)dn,i>j,i==j,i<ji>j,i<j=d=1nd(2i=1dni(j=1ij×(gcd(i,j)==1))1)=d=1nd(2i=1dni(2iϕ(i)+(i==1))1)=d=1ndi=1dni2ϕ(i)i=1dni2ϕ(i)S(n)=i=1ni2ϕ(i)=i=1nf(i)i=1n(fg)(i)=i=1ng(i)S(in)g(1)S(n)=i=1n(fg)(i)d=2ng(i)S(dn)(fg)(i)=dif(d)g(di)=did2ϕ(d)g(di)diϕ(d)=i,d2g(i)=i2did2ϕ(d)d2i2=i2diϕ(d)=i3S(n)=i=1ni3d=1nd2S(dn)=4n2(n+1)2d=1nd2S(dn)
最终化简的式子 ∑ d = 1 n d S ( n d ) \sum_{d = 1} ^{n} dS(\frac{n}{d}) d=1ndS(dn)

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-')    f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N = 8e6 + 10, mod = 1000000007;

ll phi[N], n, inv4, inv6, inv2;

int prime[N], cnt;

bool st[N];

ll quick_pow(ll a, ll n, ll mod) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

void init() {
    phi[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime[cnt++] = i;
            phi[i] = i - 1;
        }
        for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
    for(int i = 1; i < N; i++) {
        phi[i] = (phi[i - 1] + 1ll * i * i % mod * phi[i] % mod) % mod;
    }
    inv2 = quick_pow(2, mod - 2, mod), inv4 = quick_pow(4, mod - 2, mod), inv6 = quick_pow(6, mod - 2, mod);
}

ll calc1(ll x) {
    x %= mod;
    return 1ll * x * x % mod * (x + 1) % mod * (x + 1) % mod * inv4 % mod;
}

ll calc2(ll x) {
    x %= mod;
    return x * (x + 1) % mod * (2ll * x + 1) % mod * inv6 % mod;
}

unordered_map<ll, ll> ans_phi;

ll get_phi(ll x) {
    if(x < N) return phi[x];
    if(ans_phi.count(x)) return ans_phi[x];
    ll ans = calc1(x);
    for(ll l = 2, r; l <= x; l = r + 1) {
        r = x / (x / l);
        ans -= (calc2(r) - calc2(l - 1)) * get_phi(x / l) % mod;
        ans = (ans % mod + mod) % mod;
    }
    return ans_phi[x] = ans;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    ll n = read();
    init();
    ll ans = 0;
    for(ll l = 1, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans += (l + r) % mod * (r - l + 1) % mod * inv2 % mod * get_phi(n / l) % mod;
        ans %= mod; 
    }
    printf("%lld\n", ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值