[51 nod 123] 最大公约数之和 V3(杜教筛)

1237 最大公约数之和 V3

推式子

∑ i = 1 n ∑ j = 1 n g c d ( i , j ) = ∑ d = 1 n d ∑ i = 1 n ∑ j = 1 n ( g c d ( i , j ) = = d ) = ∑ d = 1 n d ∑ i = 1 n d ∑ j = 1 n d ( g c d ( i , j ) = = 1 ) = ∑ d = 1 n d ∑ i = 1 n d ∑ j = 1 n d ∑ k ∣ g c d ( i , j ) μ ( k ) = ∑ d = 1 n d ∑ k = 1 n d μ ( k ) ∑ i = 1 n k d ∑ j = 1 n k d 1 套 路 地 设 t = k d = ∑ t = 1 n ( ⌊ n t ⌋ ) 2 ∑ d ∣ t d μ ( t d ) = ∑ t = 1 n ( ⌊ n t ⌋ ) 2 ϕ ( t ) 接 下 来 就 是 杜 教 筛 求 ∑ i = 1 n ϕ ( i ) 了 , 那 这 不 就 是 杜 教 筛 水 题 了 嘛 。 \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} gcd(i, j)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^ {n} \sum_{j = 1} ^ {n} (gcd(i, j) == d)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}(gcd(i, j) == 1)\\ = \sum_{d = 1} ^{n} d\sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}} \sum_{k \mid gcd(i, j)} \mu(k)\\ = \sum_{d = 1} ^{n} d\sum_{k = 1} ^{\frac{n}{d}} \mu(k) \sum_{i = 1} ^{\frac{n}{kd}} \sum_{j = 1} ^{\frac{n}{kd}}1\\ 套路地设t = kd\\ =\sum_{t = 1} ^{n} \left(\lfloor\frac{n}{t}\rfloor \right) ^ 2 \sum_{d \mid t} d \mu(\frac{t}{d})\\ =\sum_{t = 1} ^{n} \left(\lfloor\frac{n}{t}\rfloor \right) ^ 2 \phi(t)\\ 接下来就是杜教筛求\sum_{i = 1} ^{n} \phi(i)了,那这不就是杜教筛水题了嘛。 i=1nj=1ngcd(i,j)=d=1ndi=1nj=1n(gcd(i,j)==d)=d=1ndi=1dnj=1dn(gcd(i,j)==1)=d=1ndi=1dnj=1dnkgcd(i,j)μ(k)=d=1ndk=1dnμ(k)i=1kdnj=1kdn1t=kd=t=1n(tn)2dtdμ(dt)=t=1n(tn)2ϕ(t)i=1nϕ(i)

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-')    f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N = 8e6 + 10, mod = 1000000007;

ll phi[N], inv2;

int prime[N], cnt;

bool st[N];

ll quick_pow(ll a, ll n, ll mod) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

void init() {
    phi[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime[cnt++] = i;
            phi[i] = i - 1;
        }
        for(int j = 0; j < cnt && 1ll * i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
    for(int i = 1; i < N; i++) {
        phi[i] = (phi[i - 1] + phi[i]) % mod;
    }
    inv2 = quick_pow(2, mod - 2, mod);
}

ll calc(ll x) {
    x %= mod;
    return x * (x + 1) % mod * inv2 % mod;
}

map<ll, ll> ans_phi;

ll get_phi(ll x) {
    if(x < N) return phi[x];
    if(ans_phi.count(x)) return ans_phi[x];
    ll ans = calc(x);
    for(ll l = 2, r; l <= x; l = r + 1) {
        r = x / (x / l);
        ans = (ans - (r - l + 1) % mod * get_phi(x / l) % mod + mod) % mod;
    }
    return ans_phi[x] = ans;
}

ll calc2(ll x) {
    x %= mod;
    return x * x % mod;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    ll n = read(), ans = 0;
    init();
    for(ll l = 1, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans + calc2(n / l) * (get_phi(r) - get_phi(l - 1)) % mod + mod) % mod;
    }
    cout << ans << endl;
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值