HDU 6706 huntian oy (欧拉函数 + 杜教筛)

huntian oy

推式子

∑ i = 1 n ∑ j = 1 i g c d ( i a − j a , i b − j b ) ( g c d ( i , j ) = = 1 ) = ∑ i = 1 n ∑ j = 1 i ( i − j ) ( g c d ( i , j ) = = 1 ) = ∑ i = 1 n i ∑ j = 1 i ( g c d ( i , j ) = = 1 ) − ∑ i = 1 n ∑ j = 1 i j ( g c d ( i , j ) = = 1 ) = ∑ i = 1 n i ϕ ( i ) − ∑ i = 1 n i ϕ ( i ) + ( i = = 1 ) 2 = ∑ i = 1 n i ϕ ( i ) − ( i = = 1 ) 2 然 后 套 路 地 变 成 求 S ( n ) = ∑ i = 1 n i ϕ ( i ) g ( n ) = n ϕ ( n ) 这 里 直 接 套 用 杜 教 筛 化 简 得 到 g ( 1 ) S ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ i = 2 f ( i ) S ( n i ) ( f ∗ g ) ( i ) = ∑ d ∣ n f ( d ) ∗ g ( n d ) = ∑ d ∣ n f ( d ) ∗ n d ϕ ( n d ) 另 f ( d ) = d , 则 有 S ( n ) = ∑ i = 1 n i 2 − ∑ i = 2 i S ( n i ) 然 后 直 接 套 杜 教 筛 即 可 。 \sum_{i = 1} ^{n} \sum_{j = 1} ^{i}gcd(i ^ a - j ^ a, i ^ b - j ^ b) (gcd(i, j) == 1)\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} (i - j)(gcd(i, j) == 1) \\ = \sum_{i = 1} ^{n} i\sum_{j = 1} ^{i} (gcd(i, j) == 1) - \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} j (gcd(i, j) == 1)\\ = \sum_{i = 1} ^{n} i \phi(i) - \sum_{i = 1} ^{n} \frac{i \phi(i) + (i == 1)}{2}\\ = \sum_{i = 1} ^{n} \frac{i \phi(i) - (i == 1)}{2}\\ 然后套路地变成求S(n) = \sum_{i = 1} ^{n} i \phi(i)\\ \\g(n) = n \phi(n)\\ 这里直接套用杜教筛化简得到g(1)S(n) = \sum_{i = 1} ^{n} (f*g)(i) - \sum_{i = 2} f(i)S(\frac{n}{i})\\ (f * g)(i) = \sum_{d \mid n} f(d) *g(\frac{n}{d}) = \sum_{d \mid n} f(d) * \frac{n}{d} \phi(\frac{n}{d})\\ 另f(d) =d,则有S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} i S(\frac{n}{i})\\ 然后直接套杜教筛即可。 i=1nj=1igcd(iaja,ibjb)(gcd(i,j)==1)=i=1nj=1i(ij)(gcd(i,j)==1)=i=1nij=1i(gcd(i,j)==1)i=1nj=1ij(gcd(i,j)==1)=i=1niϕ(i)i=1n2iϕ(i)+(i==1)=i=1n2iϕ(i)(i==1)S(n)=i=1niϕ(i)g(n)=nϕ(n)g(1)S(n)=i=1n(fg)(i)i=2f(i)S(in)(fg)(i)=dnf(d)g(dn)=dnf(d)dnϕ(dn)f(d)=dS(n)=i=1ni2i=2iS(in)

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-')    f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N = 1e6 + 10, mod = 1e9 + 7, inv2 = 500000004, inv6 = 166666668;

int prime[N], cnt;

ll phi[N];

bool st[N];

ll quick_pow(ll a, ll n) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        n >>= 1;
        a = a * a % mod;
    }
    return ans;
}

void init() {
    phi[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime[cnt++] = i;
            phi[i] = i - 1;
        }
        for(int j = 0; j < cnt && i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
    for(int i = 1; i < N; i++) {
        phi[i] = (1ll * phi[i] * i + phi[i - 1]) % mod;
    }
}

ll calc(int n) {
    return 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
}

unordered_map<int, ll> ans_s;

ll S(int n) {
    if(n < N) return phi[n];
    if(ans_s.count(n)) return ans_s[n];
    ll ans = calc(n);
    for(int l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans - 1ll * (r + l) * (r - l + 1) / 2 % mod * S(n / l) % mod + mod) % mod;
    }
    return ans_s[n] = ans;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    init();
    int T = read();
    while(T--) {
        int n = read(), a = read(), b = read();
        printf("%lld\n", (S(n) - 1 + mod) % mod * inv2 % mod);
    }
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值