51 NOD 1227 平均最小公倍数(杜教筛)

1227 平均最小公倍数

推式子

S ( n ) = ∑ i = 1 n ∑ j = 1 i l c m ( i , j ) i = ∑ i = 1 n ∑ j = 1 i i j i g c d ( i , j ) = ∑ i = 1 n ∑ j = 1 i j g c d ( i , j ) = ∑ i = 1 n ∑ d = 1 i ∑ j = 1 i j d ( g c d ( i , j ) = = d ) = ∑ i = 1 n ∑ d = 1 i ∑ j = 1 i d j ( g c d ( j , i d ) = = 1 ) = ∑ i = 1 n ∑ d = 1 i i d ϕ ( i d ) + ( i d = = 1 ) 2 = ∑ d = 1 n ∑ i = 1 n d i ϕ ( i ) + ( i = = 1 ) 2 接 下 来 就 是 杜 教 筛 求 ∑ i = 1 n i ϕ ( i ) 了 , g ( 1 ) S ( n ) = ∑ i = 1 n ( f ∗ g ) ( i ) − ∑ i = 2 n f ( i ) S ( n i ) 另 f ( i ) = i , 即 可 求 得 S ( n ) = ∑ i = 1 n i 2 − ∑ i = 2 n i S ( n d ) S(n) = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{lcm(i, j)}{i}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{ij}{igcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{j = 1} ^{i} \frac{j}{gcd(i, j)}\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \sum_{j = 1} ^{i} \frac{j}{d} (gcd(i, j) == d)\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \sum_{j = 1} ^{\frac{i}{d}}j(gcd(j, \frac{i}{d}) == 1)\\ = \sum_{i = 1} ^{n} \sum_{d = 1} ^{i} \frac{\frac{i}{d} \phi(\frac{i}{d}) + (\frac{i}{d} == 1)}{2}\\ = \sum_{d = 1} ^{n} \sum_{i = 1} ^{\frac{n}{d}} \frac{i \phi(i) + (i == 1)}{2} \\ 接下来就是杜教筛求\sum_{i = 1} ^{n}i \phi(i) 了,g(1)S(n) = \sum_{i = 1} ^{n} (f * g)(i) - \sum_{i = 2} ^{n} f(i) S(\frac{n}{i})\\ 另f(i) = i,即可求得S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} ^{n}iS(\frac{n}{d})\\ S(n)=i=1nj=1iilcm(i,j)=i=1nj=1iigcd(i,j)ij=i=1nj=1igcd(i,j)j=i=1nd=1ij=1idj(gcd(i,j)==d)=i=1nd=1ij=1dij(gcd(j,di)==1)=i=1nd=1i2diϕ(di)+(di==1)=d=1ni=1dn2iϕ(i)+(i==1)i=1niϕ(i)g(1)S(n)=i=1n(fg)(i)i=2nf(i)S(in)f(i)=iS(n)=i=1ni2i=2niS(dn)

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-')    f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N = 1e6 + 10, mod = 1e9 + 7;

int prime[N], cnt;

ll phi[N], inv2, inv6;

bool st[N];

ll quick_pow(ll a, ll n, ll mod) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

void init() {
    phi[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime[cnt++] = i;
            phi[i] = i - 1;
        }
        for(int j = 0; j < cnt && i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0) {
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
        }
    }
    for(int i = 1; i < N; i++) {
        phi[i] = (1ll * phi[i] * i + phi[i - 1]) % mod;
    }
    inv2 = quick_pow(2, mod - 2, mod), inv6 = quick_pow(6, mod - 2, mod);
}

unordered_map<ll, ll> ans_s;

ll S(ll n) {
    if(n < N) return phi[n];
    if(ans_s.count(n)) return ans_s[n];
    ll ans = n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
    for(ll l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans - (l + r) * (r - l + 1) / 2 % mod * S(n / l) % mod + mod) % mod;
    }
    return ans_s[n] = ans;
}

ll solve(ll n) {
    ll ans = 0;
    for(ll l = 1, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans + 1ll * (r - l + 1) * S(n / l) % mod) % mod;
    }
    return (ans + n) % mod;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    init();
    ll l = read(), r = read();
    printf("%lld\n", ((solve(r) - solve(l - 1)) % mod * inv2 % mod + mod) % mod);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值