拉格朗日插值

拉格朗日插值

简要阐述

结论给定 n + 1 n + 1 n+1个点最多可以得到一个 n n n次多项式的表达式,并且 f ( x ) = ∑ i = 1 n y i ∏ j ∤ i x − x j x i − y j f(x) = \sum_{i = 1} ^{n} y_i \prod\limits_{j \nmid i}\frac{x - x_j}{x_i - y_j} f(x)=i=1nyijixiyjxxj我们随便往里带入一个 x i , y j x_i, y_j xi,yj可以得到等式是成立的,所以我们只要套模板即可求得某个函数的值。

特殊情况

x x x的取值是连续的,我们还可以得到一个更优的算法。

p r e [ i ] = ( x − x 1 ) ( x − x 2 ) ( x − x 3 ) … ( x − x i − 1 ) ( x − x i ) , s u c [ i ] = ( x − x i ) ( x − x i + 1 ) ( x − x i + 2 ) … ( x − x n − 1 ) ( x − x n ) pre[i] = (x - x_1)(x - x_2) (x - x_3) \dots(x - x_{i - 1})(x - x_i),suc[i] = (x - x_{i})(x - x_{i + 1})(x - x_{i + 2}) \dots (x - x_{n - 1})(x - x_{n}) pre[i]=(xx1)(xx2)(xx3)(xxi1)(xxi),suc[i]=(xxi)(xxi+1)(xxi+2)(xxn1)(xxn)

所以上面式子的分母可以写成 p r e [ i − 1 ] × s u c [ i + 1 ] pre[i - 1] \times suc[i + 1] pre[i1]×suc[i+1],同样的分子写成 ( − 1 ) n − i ( i − 1 ) ! ( n − i ) ! (-1) ^{n - i} (i - 1) !(n - i)! (1)ni(i1)!(ni)!,这个时候提前处理好阶乘逆元,前缀积,后缀积即可达到 O ( n ) O(n) O(n)来求解了。

两个模板题

P4781 【模板】拉格朗日插值

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int inf = 0x3f3f3f3f;
const double eps = 1e-7;

const int N = 2e3 + 10, mod = 998244353;

ll x[N], y[N], ans, s1, s2, n, k;

ll quick_pow(ll a, int n) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

ll inv(ll x) {
    return quick_pow(x, mod - 2);
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    scanf("%lld %lld", &n, &k);
    for(int i = 1; i <= n; i++) {
        scanf("%lld %lld", &x[i], &y[i]);
    }
    for(int i = 1; i <= n; i++) {
        s1 = y[i], s2 = 1;
        for(int j = 1; j <= n; j++) {
            if(i == j) continue;
            s1 = (s1 * (k - x[j]) % mod + mod) % mod, s2 = (s2 * (x[i] - x[j]) % mod + mod) % mod;
        }
        ans = (ans + s1 * inv(s2) % mod) % mod;
    }
    printf("%lld\n", ans);
	return 0;
}

∑ i = 1 n i k \sum\limits_{i = 1} ^{n} i ^ k i=1nik

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int inf = 0x3f3f3f3f;
const double eps = 1e-7;

const int N = 1e6 + 10, mod = 1e9 + 7;

ll fac[N], pre[N], suc[N], inv[N], prime[N], sum[N], n, k, cnt;

bool st[N];

ll quick_pow(ll a, int n) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

void init() {
    sum[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            prime[cnt++] = i;
            sum[i] = quick_pow(i, k);
        }
        for(int j = 0; j < cnt && i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            sum[i * prime[j]] = 1ll * sum[i] * sum[prime[j]] % mod;
            if(i % prime[j] == 0) break;
        }
    }
    fac[0] = inv[0] = 1;
    for(int i = 1; i < N; i++) {
        sum[i] = (sum[i] + sum[i - 1]) % mod;
        fac[i] = 1ll * fac[i - 1] * i % mod;
    }
    inv[N - 1] = quick_pow(fac[N - 1], mod - 2);
    for(int i = N - 2; i >= 1; i--) {
        inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
    }
}

ll solve(ll n, int k) {
    ll ans = 0;
    init();
    pre[0] = suc[k + 3] = 1;
    for(int i = 1; i <= k + 2; i++) pre[i] = 1ll * pre[i - 1] * (n - i) % mod;
    for(int i = k + 2; i >= 1; i--) suc[i] = 1ll * suc[i + 1] * (n - i) % mod;
    for(int i = 1; i <= k + 2; i++) {
        ll a = 1ll * pre[i - 1] * suc[i + 1] % mod, b = 1ll * inv[i - 1] * inv[k + 2 - i] % mod;
        if((k + 2 - i) & 1) b *= -1;
        ans = ((ans + 1ll * sum[i] * a % mod * b % mod) % mod + mod) % mod;
    }
    return ans;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    scanf("%lld %lld", &n, &k);
    printf("%lld\n", solve(n, k));
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值