HDU 6607 Easy Math Problem(杜教筛 + min_25 + 拉格朗日插值)

Easy Math Problem

推式子

∑ i = 1 n ∑ j = 1 n g c d ( i , j ) K l c m ( i , j ) [ g c d ( i , j ) ∈ p r i m e ] ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) K − 1 i j [ g c d ( i , j ) ∈ p r i m e ] ∑ d ∈ p r i m e n d K + 1 ∑ i = 1 n d ∑ j = 1 n d i j [ g c d ( i , j ) = = 1 ] 对 ∑ i = 1 n ∑ j = 1 n i j [ g c d ( i , j ) = = 1 ] 化 简 2 ( ∑ i = 1 n i i ϕ ( i ) + [ i = = 1 ] 2 ) − 1 = ∑ i = 1 n i 2 ϕ ( i ) ∑ d ∈ p r i m e n d K + 1 ∑ i = 1 n d i 2 ϕ ( i ) \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} gcd(i, j) ^ K lcm(i, j)[gcd(i, j) \in prime]\\ \sum_{i = 1} ^{n} \sum_{j = 1} ^{n} gcd(i, j) ^{K - 1} ij[gcd(i, j) \in prime]\\ \sum_{d \in prime} ^{n} d ^ {K + 1} \sum_{i = 1} ^{\frac{n}{d}} \sum_{j = 1} ^{\frac{n}{d}}ij[gcd(i, j) == 1]\\ 对\sum_{i = 1} ^{n} \sum_{j = 1} ^{n}ij[gcd(i, j) == 1]化简\\ 2(\sum_{i = 1} ^{n} i \frac{i\phi(i) + [i == 1]}{2}) - 1 = \sum_{i = 1} ^{n} i ^ 2 \phi(i) \\ \sum_{d \in prime} ^{n} d ^ {K + 1} \sum_{i = 1} ^{\frac{n}{d}} i ^ 2 \phi(i)\\ i=1nj=1ngcd(i,j)Klcm(i,j)[gcd(i,j)prime]i=1nj=1ngcd(i,j)K1ij[gcd(i,j)prime]dprimendK+1i=1dnj=1dnij[gcd(i,j)==1]i=1nj=1nij[gcd(i,j)==1]2(i=1ni2iϕ(i)+[i==1])1=i=1ni2ϕ(i)dprimendK+1i=1dni2ϕ(i)

接下来就是快了的数论分块了,首先我们用min_25得到区间 [ l , r ] [l, r] [l,r]部分的质数的贡献,然后再通过杜教筛得到后面,两者相乘然后累加即可,对于 ∑ i = 1 n i k + 1 \sum\limits_{i = 1} ^{n} i ^{k + 1} i=1nik+1这一部分求和,显然我们可以通过拉格朗日插值来求解。

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-')    f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N = 1e6 + 10, mod = 1e9 + 7, inv2 = (mod + 1) >> 1, inv6 = (mod + 1) / 6;

namespace Djs {
    int prime[N], cnt;

    ll phi[N];

    bool st[N];

    void init() {
        phi[1] = 1;
        for(int i = 2; i < N; i++) {
            if(!st[i]) {
                prime[++cnt] = i;
                phi[i] = i - 1;
            }
            for(int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {
                st[i * prime[j]] = 1;
                if(i % prime[j] == 0) {
                    phi[i * prime[j]] = phi[i] * prime[j];
                    break;
                }
                phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
        for(int i = 1; i < N; i++) {
            phi[i] = (phi[i - 1] + 1ll * i * i % mod * phi[i] % mod) % mod;
        }
    }

    ll calc1(ll n) {
        n %= mod;
        return (n * (n + 1) % mod * inv2 % mod) * (n * (n + 1) % mod * inv2 % mod) % mod;
    }

    ll calc2(ll n) {
        n %= mod;
        return n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
    }

    unordered_map<ll, ll> ans_s;

    ll S(ll n) {
        if(n < N) return phi[n];
        if(ans_s.count(n)) return ans_s[n];
        ll ans = calc1(n);
        for(ll l = 2, r; l <= n; l = r + 1) {
            r = n / (n / l);
            ans = ((ans - (calc2(r) - calc2(l - 1)) * S(n / l) % mod) % mod + mod) % mod;
        }
        return ans_s[n] = ans;
    }
}

namespace Lagrange {
    const int N = 110;

    ll fac[N], pre[N], suc[N], inv[N], prime[N], sum[N], mu[N], n, k, cnt;

    bool st[N];

    ll quick_pow(ll a, int n) {
        ll ans = 1;
        while(n) {
            if(n & 1) ans = ans * a % mod;
            a = a * a % mod;
            n >>= 1;
        }
        return ans;
    }

    void init1() {
        fac[0] = inv[0] = 1;
        for(int i = 1; i < N; i++) {
            fac[i] = 1ll * fac[i - 1] * i % mod;
        }
        inv[N - 1] = quick_pow(fac[N - 1], mod - 2);
        for(int i = N - 2; i >= 1; i--) {
            inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
        }
    }

    void init() {
        for(int i = 1; i < N; i++) {
            st[i] = 0;
        }
        cnt = 0;
        sum[1] = 1;
        for(int i = 2; i < N; i++) {
            if(!st[i]) {
                prime[cnt++] = i;
                sum[i] = quick_pow(i, k);
            }
            for(int j = 0; j < cnt && i * prime[j] < N; j++) {
                st[i * prime[j]] = 1;
                sum[i * prime[j]] = 1ll * sum[i] * sum[prime[j]] % mod;
                if(i % prime[j] == 0) break;
            }
        }
        for(int i = 1; i < N; i++) {
            sum[i] = (sum[i] + sum[i - 1]) % mod;
        }
    }

    ll solve(ll n) {
        n %= mod;
        ll ans = 0;
        pre[0] = suc[k + 3] = 1;
        for(int i = 1; i <= k + 2; i++) pre[i] = 1ll * pre[i - 1] * (n - i) % mod;
        for(int i = k + 2; i >= 1; i--) suc[i] = 1ll * suc[i + 1] * (n - i) % mod;
        for(int i = 1; i <= k + 2; i++) {
            ll a = 1ll * pre[i - 1] * suc[i + 1] % mod, b = 1ll * inv[i - 1] * inv[k + 2 - i] % mod;
            if((k + 2 - i) & 1) b *= -1;
            ans = ((ans + 1ll * sum[i] * a % mod * b % mod) % mod + mod) % mod;
        }
        return (ans - 1 + mod) % mod;
    }
}

namespace Min_25 {
    int prime[N], id1[N], id2[N], cnt, m, k, T;

    ll g[N], sum[N], a[N], n;

    bool st[N];

    int ID(ll x) {
        return x <= T ? id1[x] : id2[n / x];
    }

    void init(ll x, int y) {
        n = x, k = y;
        cnt = 0, m = 0;
        T = sqrt(n + 0.5);
        for(int i = 2; i <= T; i++) {
            if(!st[i]) {
                prime[++cnt] = i;
                sum[cnt] = (sum[cnt - 1] + Lagrange::quick_pow(i, k)) % mod;
            }
            for(int j = 1; j <= cnt && 1ll * i * prime[j] <= T; j++) {
                st[i * prime[j]] = 1;
                if(i % prime[j] == 0) {
                    break;
                }
            }
        }
        for(ll l = 1, r; l <= n; l = r + 1) {
            r = n / (n / l);
            a[++m] = n / l;
            if(a[m] <= T) id1[a[m]] = m;
            else id2[n / a[m]] = m;
            g[m] = Lagrange::solve(a[m]);
        }
        for(int j = 1; j <= cnt; j++) {
            for(int i = 1; i <= m && 1ll * prime[j] * prime[j] <= a[i]; i++) {
                g[i] = ((g[i] - Lagrange::quick_pow(prime[j], k) * (g[ID(a[i] / prime[j])] - sum[j - 1]) % mod) % mod + mod) % mod;
            }
        }
        for(int i = 1; i <= T; i++) {
            st[i] = 0;
        }
    }

    ll solve(ll x) {
        if(x <= 1) return 0;
        return g[ID(x)];
    }
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    Djs::init();
    Lagrange::init1();
    int T = read();
    while(T--) {
        ll n = read(), k = read() + 1;
        Lagrange::k = k;
        Lagrange::init();
        Min_25::init(n, k);
        ll ans = 0;
        for(ll l = 1, r; l <= n; l = r + 1) {
            r = n / (n / l);
            ans = (ans + (Min_25::solve(r) - Min_25::solve(l - 1)) * Djs::S(n / l) % mod) % mod;
        }
        printf("%lld\n", (ans % mod + mod) % mod);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值