多项式求逆

多项式求逆

f ( x ) g ( x ) ≡ 1 ( m o d x n ) f(x) g(x) \equiv 1 \pmod {x ^ n} f(x)g(x)1(modxn),称 f ( x ) f(x) f(x) g ( x ) g(x) g(x)或者 g ( x ) g(x) g(x) f ( x ) f(x) f(x) x n x ^ n xn意义下的逆元。

下面我们讨论给定 f ( x ) f(x) f(x),求其逆 f − 1 ( x ) f ^{-1}(x) f1(x)

倍增求解

假设我们已经求得 f ( x ) f(x) f(x) x ⌈ n 2 ⌉ x ^{\lceil \frac{n}{2}} \rceil x2n下的逆元 f 0 − 1 ( x ) f_0 ^{-1} (x) f01(x),要求 f − 1 ( x ) f ^{-1}(x) f1(x),即膜 x n x ^{n} xn下的逆元,则

f ( x ) f 0 − 1 ( x ) ≡ 1 ( m o d x ⌈ n 2 ⌉ ) f(x) f_0 ^{-1}(x) \equiv 1 \pmod{x ^{\lceil\frac{n}{2}\rceil} } f(x)f01(x)1(modx2n)

显然 f ( x ) f − 1 ( x ) ≡ 1 ( m o d x ⌈ n 2 ⌉ ) f(x) f^{-1}(x) \equiv 1 \pmod {x ^{ \lceil\frac{n}{2}\rceil}} f(x)f1(x)1(modx2n)也是成立的

对两边同时乘以 f 0 − 1 ( x ) f_0 ^{-1}(x) f01(x)并移项有

f − 1 ( x ) − f 0 − 1 ( x ) ≡ 0 ( m o d x ⌈ n 2 ⌉ ) f ^{-1}(x) - f_0 ^{-1}(x) \equiv 0 \pmod{x ^{\lceil\frac{n}{2}\rceil}} f1(x)f01(x)0(modx2n)

对两边同时开方得到

f − 2 ( x ) − 2 f − 1 f 0 − 1 ( x ) + f 0 − 2 ( x ) ≡ 0 ( m o d x n ) f ^{-2}(x) - 2 f^{-1} f_0 ^{-1}(x) + f_0 ^{-2}(x) \equiv 0 \pmod {x ^n} f2(x)2f1f01(x)+f02(x)0(modxn)

我们再对两边乘上一个 f ( x ) f(x) f(x),则有

f − 1 ( x ) − 2 f 0 − 1 + f ( x ) f 0 − 2 ( x ) ≡ 0 ( m o d x n ) f ^{-1}(x) - 2 f_0 ^{-1} + f(x) f_0 ^{-2}(x) \equiv 0 \pmod{x ^n} f1(x)2f01+f(x)f02(x)0(modxn)

再对其进行移项可得

f − 1 ( x ) ≡ f 0 − 1 ( x ) ( 2 − f ( x ) f 0 − 1 ( x ) ) ( m o d x n ) f ^{-1}(x) \equiv f_0 ^{-1}(x)\left( 2 - f(x) f_0 ^{-1}(x) \right) \pmod {x ^n} f1(x)f01(x)(2f(x)f01(x))(modxn)

由此我们递归求解即可。

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

const int N = 5e6 + 10, mod = 998244353;

int a[N], b[N], c[N], r[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll *  a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *a, int *b, int n) {
  if (n == 1) {
    b[0] = quick_pow(a[0], mod - 2);
    return ;
  }
  polyinv(a, b, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    c[i] = a[i];
  }
  for (int i = n; i < lim; i++) {
    c[i] = 0;
  }
  NTT(b, lim, 1);
  NTT(c, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * c[i] * b[i] % mod + mod) % mod;
    b[i] = 1ll * b[i] * cur % mod;
  }
  NTT(b, lim, -1);
  for (int i = n; i < lim; i++) {
    b[i] = 0;
  }
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  int n;
  scanf("%d", &n);
  for (int i = 0; i < n; i++) {
    scanf("%d", &a[i]);
  }
  polyinv(a, b, n);
  for (int i = 0; i < n; i++) {
    printf("%d%c", b[i], i + 1 == n ? '\n' : ' ');
  }
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值