Product of GCDs
∏
d
=
1
n
d
∑
[
gcd
(
s
1
d
,
s
2
d
,
…
,
s
k
d
)
=
1
]
∏
d
=
1
n
d
∑
i
=
1
n
d
μ
(
i
)
C
f
[
i
d
]
k
\prod_{d = 1} ^{n} d ^{\sum[\gcd(\frac{s_1}{d}, \frac{s_2}{d}, \dots, \frac{s_k}{d}) = 1]}\\ \prod_{d = 1} ^{n} d ^{\sum\limits_{i = 1} ^{\frac{n}{d}} \mu(i) C_{f[id]} ^{k}}\\
d=1∏nd∑[gcd(ds1,ds2,…,dsk)=1]d=1∏ndi=1∑dnμ(i)Cf[id]k
筛出质数,然后得到
p
h
i
(
m
o
d
)
phi(mod)
phi(mod),即可欧拉降幂写(提供一个思路整体复杂度
n
log
2
n
n \log ^ 2 n
nlog2n了)。
#pragma GCC optimize(3,"Ofast","inline")
#include <bits/stdc++.h>
using namespace std;
const int M = 1e7 + 10, N = 8e4 + 10, maxn = 80000;
int prime[M], mu[M], cnt;
int f[N], n, k;
long long C[N][32], mod, phi;
bool st[M];
inline long long read() {
long long x = 0;
char c = getchar();
while (c < '0' || c > '9') {
c = getchar();
}
while (c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return x;
}
void Init() {
mu[1] = 1;
for (int i = 2; i < M; i++) {
if (!st[i]) {
prime[++cnt] = i;
mu[i] = -1;
}
for (int j = 1; j <= cnt && 1ll * i * prime[j] < M; j++) {
st[i * prime[j]] = 1;
if (i % prime[j] == 0) {
break;
}
mu[i * prime[j]] = -mu[i];
}
}
}
long long Phi(long long n) {
long long ans = n;
for (int i = 1; i <= cnt && 1ll * prime[i] * prime[i] <= n; i++) {
if (n % prime[i] == 0) {
ans = ans / prime[i] * (prime[i] - 1);
while (n % prime[i] == 0) {
n /= prime[i];
}
}
}
if (n > 1) {
ans = ans / n * (n - 1);
}
return ans;
}
long long mul(long long x, long long y) {
return (__int128)x * y % mod;
}
long long quick_pow(long long a, long long n) {
long long ans = 1;
while (n) {
if (n & 1) {
ans = mul(ans, a);
}
a = mul(a, a);
n >>= 1;
}
return ans;
}
int main() {
// freopen("data05.in", "r", stdin);
// freopen("out.txt", "w", stdout);
Init();
int T;
T = read();
while (T--) {
n = read(), k = read(), mod = read();
for (int i = 1; i < N; i++) {
f[i] = 0;
}
for (int i = 1, x; i <= n; i++) {
x = read();
f[x]++;
}
for (int i = 1; i <= maxn; i++) {
for (int j = 2 * i; j <= maxn; j += i) {
f[i] += f[j];
}
}
phi = Phi(mod);
C[0][0] = 1;
for (int i = 1; i <= maxn; i++) {
C[i][0] = 1;
for (int j = 1; j <= 30; j++) {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
if (C[i][j] > phi) {
C[i][j] -= phi;
}
}
}
long long ans = 1;
for (int d = 2; d <= maxn; d++) {
long long cur = 0;
for (int i = 1; i <= maxn / d; i++) {
if (mu[i] == -1) {
cur -= C[f[i * d]][k];
if (cur < 0) {
cur += phi;
}
}
else if (mu[i] == 1) {
cur += C[f[i * d]][k];
if (cur > phi) {
cur -= phi;
}
}
}
ans = mul(ans, quick_pow(d, cur));
}
printf("%lld\n", ans);
}
return 0;
}