E. Mocha and Stars(莫比乌斯反演、简单dp)

E. Mocha and Stars

∑ a 1 = l 1 r 1 ∑ a 2 = l 2 r 2 ⋯ ∑ a n = l n r n [ a 1 + a 2 + ⋯ + a n ≤ m ] [ gcd ⁡ ( a 1 , a 2 , … , a n ) = 1 ] \sum_{a_1 = l_1} ^{r_1} \sum_{a_2 = l_2} ^{r_2} \dots \sum_{a_n = l_n} ^{r_n} [a_1 + a_2 + \dots + a_n \le m][\gcd(a_1, a_2, \dots, a_n) = 1]\\ a1=l1r1a2=l2r2an=lnrn[a1+a2++anm][gcd(a1,a2,,an)=1]
2 ≤ n ≤ 50 , 1 ≤ m ≤ 1 0 5 , 1 ≤ l i ≤ r i ≤ m 2 \le n \le 50, 1 \le m \le 10 ^ 5, 1 \le l_i \le r_i \le m 2n50,1m105,1lirim,对上述答案对 998   244   353 998\ 244\ 353 998 244 353取模。

∑ a 1 = l 1 r 1 ∑ a 2 = l 2 r 2 ⋯ ∑ a n = l n r n [ a 1 + a 2 + ⋯ + a n ≤ m ] [ gcd ⁡ ( a 1 , a 2 , … , a n ) = 1 ] ∑ k = 1 m μ ( k ) ∑ a 1 = ⌈ l 1 k ⌉ ⌊ r 1 k ⌋ ∑ a 2 = ⌈ l 2 k ⌉ ⌊ r 2 k ⌋ ⋯ ∑ a n = ⌈ l n k ⌉ ⌊ r n k ⌋ [ a 1 + a 2 + ⋯ + a n ≤ ⌊ m d ⌋ ] \sum_{a_1 = l_1} ^{r_1} \sum_{a_2 = l_2} ^{r_2} \dots \sum_{a_n = l_n} ^{r_n} [a_1 + a_2 + \dots + a_n \le m][\gcd(a_1, a_2, \dots, a_n) = 1]\\ \sum_{k = 1} ^{m} \mu(k) \sum_{a_1 = \lceil \frac{l_1}{k} \rceil} ^{\lfloor \frac{r_1}{k} \rfloor} \sum_{a_2 = \lceil \frac{l_2}{k} \rceil} ^{\lfloor \frac{r_2}{k} \rfloor} \dots \sum_{a_n = \lceil \frac{l_n}{k} \rceil} ^{\lfloor \frac{r_n}{k} \rfloor} [a_1 + a_2 + \dots + a_n \le \lfloor \frac{m}{d} \rfloor]\\ a1=l1r1a2=l2r2an=lnrn[a1+a2++anm][gcd(a1,a2,,an)=1]k=1mμ(k)a1=kl1kr1a2=kl2kr2an=klnkrn[a1+a2++andm]

其中 ∑ a 1 = ⌈ l 1 k ⌉ ⌊ r 1 k ⌋ ∑ a 2 = ⌈ l 2 k ⌉ ⌊ r 2 k ⌋ ⋯ ∑ a n = ⌈ l n k ⌉ ⌊ r n k ⌋ [ a 1 + a 2 + ⋯ + a n ≤ ⌊ m d ⌋ ] \sum\limits_{a_1 = \lceil \frac{l_1}{k} \rceil} ^{\lfloor \frac{r_1}{k} \rfloor} \sum\limits_{a_2 = \lceil \frac{l_2}{k} \rceil} ^{\lfloor \frac{r_2}{k} \rfloor} \dots \sum\limits_{a_n = \lceil \frac{l_n}{k} \rceil} ^{\lfloor \frac{r_n}{k} \rfloor} [a_1 + a_2 + \dots + a_n \le \lfloor \frac{m}{d} \rfloor] a1=kl1kr1a2=kl2kr2an=klnkrn[a1+a2++andm],可以考虑 d p dp dp求解, f [ i ] [ j ] f[i][j] f[i][j],表示前 i i i个数,和为 j j j的方案有多少,复杂度 n × ⌊ m d ⌋ n \times \lfloor \frac{m}{d} \rfloor n×dm

由此,整体复杂度是 n × m × log ⁡ m n \times m \times \log m n×m×logm

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10, mod = 998244353;

int mu[N], prime[N], L[N], R[N], f[N], pre[N], n, cnt, M;

bool st[N];

inline int add(int x, int y) {
  return x + y < mod ? x + y : x + y - mod;
}

inline int sub(int x, int y) {
  return x >= y ? x - y : x - y + mod;
}

void init() {
  mu[1] = 1;
  for (int i = 2; i < N; i++) {
    if (!st[i]) {
      prime[++cnt] = i;
      mu[i] = -1;
    }
    for (int j = 1; j <= cnt && 1ll * i * prime[j] < N; j++) {
      st[i * prime[j]] = 1;
      if (i % prime[j] == 0) {
        break;
      }
      mu[i * prime[j]] = -mu[i];
    }
  }
}

int F(int d) {
  int m = M / d, sum = 0;
  for (int i = 1; i <= n; i++) {
    int l = (L[i] + d - 1) / d, r = R[i] / d;
    if (l > r) {
      return 0;
    }
    sum += l;
  }
  if (sum > m) {
    return 0;
  }
  for (int i = 1; i <= m; i++) {
    f[i] = 0;
  }
  for (int i = 1; i <= n; i++) {
    int l = (L[i] + d - 1) / d, r = R[i] / d;
    if (i == 1) {
      for (int j = l; j <= r; j++) {
        f[j] = 1;
      }
      continue;
    }
    for (int j = 1; j <= m; j++) {
      pre[j] = add(pre[j - 1], f[j]);
      f[j] = 0;
    }
    for (int j = 1; j <= m; j++) {
      // x + {l, l + 1, ………, r} = j, x = [j - r, j - l]
      int L = max(1, j - r), R = j - l;
      if (L > R) {
        continue;
      }
      f[j] = sub(pre[R], pre[L - 1]);
    }
  }
  int ans = 0;
  for (int i = 1; i <= m; i++) {
    ans = add(ans, f[i]);
  }
  return ans;
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  init();
  scanf("%d %d", &n, &M);
  for (int i = 1; i <= n; i++) {
    scanf("%d %d", &L[i], &R[i]);
  }
  int ans = 0;
  for (int i = 1; i <= M; i++) {
    if (mu[i] == -1) {
      ans = sub(ans, F(i));
    }
    else if (mu[i] == 1) {
      ans = add(ans, F(i));
    }
  }
  printf("%d\n", ans);
  return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值